Table of Contents Author Guidelines Submit a Manuscript
Enzyme Research
Volume 2014, Article ID 163242, 21 pages
http://dx.doi.org/10.1155/2014/163242
Review Article

Fungal Laccases and Their Applications in Bioremediation

Applied Microbiology Laboratory, Department of Virology, Sri Venkateswara University, Tirupati 517 502, India

Received 13 November 2013; Accepted 22 April 2014; Published 15 May 2014

Academic Editor: David Ballou

Copyright © 2014 Buddolla Viswanath et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Viswanath, M. Subhosh Chandra, H. Pallavi, and B. Rajasekhar Reddy, “Screening and assessment of laccase producing fungi isolated from different environmental samples,” African Journal of Biotechnology, vol. 7, no. 8, pp. 1129–1133, 2008. View at Google Scholar · View at Scopus
  2. Shraddha, R. Shekher, S. Sehgal, M. Kamthania, and A. Kumar, “Laccase: microbial sources, production, purification, and potential biotechnological applications,” Enzyme Research, vol. 2011, Article ID 217861, 11 pages, 2011. View at Publisher · View at Google Scholar
  3. J. M. Bollag, K. L. Shuttleworth, and D. H. Anderson, “Laccase-mediated detoxification of phenolic compounds,” Applied and Environmental Microbiology, vol. 54, no. 12, pp. 3086–3091, 1988. View at Google Scholar · View at Scopus
  4. G. Singh, P. Sharma, and N. Capalash, “Performance of an alkalophilic and halotolerant laccase from γ-proteobacterium JB in the presence of industrial pollutants,” Journal of General and Applied Microbiology, vol. 55, no. 4, pp. 283–289, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Singh, A. Bhalla, P. Kaur, N. Capalash, and P. Sharma, “Laccase from prokaryotes: a new source for an old enzyme,” Reviews in Environmental Science and Biotechnology, vol. 10, no. 4, pp. 309–326, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Viswanath, M. S. Chandra, K. P. Kumar, and B. Rajasekhar Reddy, “Production and purification of laccase from Stereum ostrea and its ability to decolorize textile dyes,” Dynamic Biochemistry Process Biotechnology Molecular Biology, vol. 2, pp. 19–25, 2008. View at Google Scholar
  7. Y. Shi, L. chai, C. Tang et al., “Characterization and genomic analysis of kraft lignin biodegradation by the beta-proteobacterium Cupriavidus basilensis B-8,” Biotechnology for Biofuels, vol. 6, p. 1, 2013. View at Google Scholar
  8. C. F. Thurston, “The structure and function of fungal laccases,” Microbiology, vol. 140, no. 1, pp. 19–26, 1994. View at Google Scholar · View at Scopus
  9. S. S. Desai and C. Nityanand, “Microbial laccases and their applications: a review,” Asian Journal of Biotechnology, vol. 3, no. 2, pp. 98–124, 2011. View at Google Scholar
  10. P. Baldrian, “Fungal laccases-occurrence and properties,” FEMS Microbiology Reviews, vol. 30, no. 2, pp. 215–242, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. J. C. Gonzalez, S. C. Medina, A. Rodriguez, J. F. Osma, and C. J. Almeciga-Diaz, “Production of Trametes pubescens laccase under submerged and semi-Solid culture conditions on agro-Industrial wastes,” PLoS ONE, vol. 8, no. 9, Article ID e73721, 2013. View at Publisher · View at Google Scholar
  12. S. Rodríguez Couto and J. L. Toca Herrera, “Industrial and biotechnological applications of laccases: a review,” Biotechnology Advances, vol. 24, no. 5, pp. 500–513, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Sánchez, A. Ferrer, L. Serrano, A. Toledano, J. Labidi, and A. Rodríguez, “Hesperaloe funifera as a raw material for integral utilization of its components,” BioResources, vol. 6, no. 1, pp. 3–21, 2011. View at Google Scholar · View at Scopus
  14. R. C. Minussi, M. A. Miranda, J. A. Silva et al., “Purification, characterization and application of laccase from Trametes versicolor for colour and phenolic removal of olive mill wastewater in the presence of 1-hydroxybenzotriazole,” African Journal of Biotechnology, vol. 6, no. 10, pp. 1248–1254, 2007. View at Google Scholar · View at Scopus
  15. S. Riva, “Laccases: blue enzymes for green chemistry,” Trends in Biotechnology, vol. 24, no. 5, pp. 219–226, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Bertrand, “Sur la laccase et sur le pouvoir oxydant de cette diastase,” Comptes Rendus de L'Academie des Sciences, vol. 120, pp. 266–269, 1985. View at Google Scholar
  17. P. Ranocha, G. McDougall, S. Hawkins et al., “Biochemical characterization, molecular cloning and expression of laccases—a divergent gene family—in poplar,” European Journal of Biochemistry, vol. 259, no. 1-2, pp. 485–495, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. G. L. Woolery, L. Powers, J. Peisach, and T. G. Spiro, “X-ray absorption study of Rhus laccase: evidence for a copper-copper interaction, which disappears on type 2 copper removal,” Biochemistry, vol. 23, no. 15, pp. 3428–3434, 1984. View at Google Scholar · View at Scopus
  19. G. Battistuzzi, G. Di Rocco, A. Leonardi, and M. Sola, “1H NMR of native and azide-inhibited laccase from Rhus vernicifera,” Journal of Inorganic Biochemistry, vol. 96, no. 4, pp. 503–506, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. D. L. Johnson, J. L. Thompson, S. M. Brinkmann, K. A. Schuller, and L. L. Martin, “Electrochemical characterization of purified Rhus vernicifera laccase: voltammetric evidence for a sequential four-electron transfer,” Biochemistry, vol. 42, no. 34, pp. 10229–10237, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Gavnholt and K. Larsen, “Molecular biology of plant laccases in relation to lignin formation,” Physiologia Plantarum, vol. 116, no. 3, pp. 273–280, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. J. T. Hoopes and J. F. D. Dean, “Ferroxidase activity in a laccase-like multicopper oxidase from Liriodendron tulipifera,” Plant Physiology and Biochemistry, vol. 42, no. 1, pp. 27–33, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. A. De Marco and K. A. Roubelakis-Angelakis, “Laccase activity could contribute to cell-wall reconstitution in regenerating protoplasts,” Phytochemistry, vol. 46, no. 3, pp. 421–425, 1997. View at Publisher · View at Google Scholar · View at Scopus
  24. A. M. Mayer and R. C. Staples, “Laccase: new functions for an old enzyme,” Phytochemistry, vol. 60, no. 6, pp. 551–565, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. S. F. Moin and M. N. Omar, “Laccase enzymes: purification, structure to catalysis and tailoring,” Protein Peptide Letters, vol. 20, no. 12, 2013. View at Google Scholar
  26. A. Givaudan, A. Effosse, D. Faure, P. Potier, M.-L. Bouillant, and R. Bally, “Polyphenol oxidase in Azospirillum lipoferum isolated from rice rhizosphere: evidence for laccase activity in non-motile strains of Azospirillum lipoferum,” FEMS Microbiology Letters, vol. 108, no. 2, pp. 205–210, 1993. View at Publisher · View at Google Scholar · View at Scopus
  27. D. Faure, M. L. Bouillant, and R. Bally, “Isolation of Azospirillum lipoferum 4T Tn5 mutants affected in melanization and laccase activity,” Applied and Environmental Microbiology, vol. 60, no. 9, pp. 3413–3415, 1994. View at Google Scholar · View at Scopus
  28. A. Sanchez-Amat, P. Lucas-Elío, E. Fernández, J. C. García-Borrón, and F. Solano, “Molecular cloning and functional characterization of a unique multipotent polyphenol oxidase from Marinomonas mediterranea,” Biochimica et Biophysica Acta, vol. 1547, no. 1, pp. 104–116, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. L. O. Martins, C. M. Soares, M. M. Pereira et al., “Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat,” Journal of Biological Chemistry, vol. 277, no. 21, pp. 18849–18859, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. M. E. Arias, M. Arenas, J. Rodríguez, J. Soliveri, A. S. Ball, and M. Hernández, “Kraft pulp biobleaching and mediated oxidation of a nonphenolic substrate by laccase from Streptomyces cyaneus CECT 3335,” Applied and Environmental Microbiology, vol. 69, no. 4, pp. 1953–1958, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. T. Suzuki, K. Endo, M. Ito, H. Tsujibo, K. Miyamoto, and Y. Inamori, “A thermostable laccase from Streptomyces lavendulae REN-7: purification, characterization, nucleotide sequence, and expression,” Bioscience, Biotechnology and Biochemistry, vol. 67, no. 10, pp. 2167–2175, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Claus, “Laccases and their occurrence in prokaryotes,” Archives of Microbiology, vol. 179, no. 3, pp. 145–150, 2003. View at Google Scholar · View at Scopus
  33. A. B. Dalfard, K. Khajeh, M. R. Soudi, H. Naderi-Manesh, B. Ranjbar, and R. H. Sajedi, “Isolation and biochemical characterization of laccase and tyrosinase activities in a novel melanogenic soil bacterium,” Enzyme and Microbial Technology, vol. 39, no. 7, pp. 1409–1416, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. K. Koschorreck, S. M. Richter, A. B. Ene, E. Roduner, R. D. Schmid, and V. B. Urlacher, “Cloning and characterization of a new laccase from Bacillus licheniformis catalyzing dimerization of phenolic acids,” Applied Microbiology and Biotechnology, vol. 79, no. 2, pp. 217–224, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. G. Naclerio, A. Falasca, E. Petrella, V. Nerone, F. Cocco, and F. Celico, “Potential role of Bacillus endospores in soil amended by olive mill wastewater,” Water Science and Technology, vol. 61, no. 11, pp. 2873–2879, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. L.-L. Kiiskinen, L. Viikari, and K. Kruus, “Purification and characterisation of a novel laccase from the ascomycete Melanocarpus albomyces,” Applied Microbiology and Biotechnology, vol. 59, no. 2-3, pp. 198–204, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. Kim, N.-S. Cho, T.-J. Eom, and W. Shin, “Purification and characterization of a laccase from Cerrena unicolor and its reactivity in lignin degradation,” Bulletin of the Korean Chemical Society, vol. 23, no. 7, pp. 985–989, 2002. View at Google Scholar · View at Scopus
  38. G. Iyer and B. B. Chattoo, “Purification and characterization of laccase from the rice blast fungus, Magnaporthe grisea,” FEMS Microbiology Letters, vol. 227, no. 1, pp. 121–126, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Levasseur, M. Saloheimo, D. Navarro et al., “Exploring laccase-like multicopper oxidase genes from the ascomycete Trichoderma reesei: a functional, phylogenetic and evolutionary study,” BMC Biochemistry, vol. 11, no. 1, article 32, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. D. H. Nghi, B. Bittner, H. Kellner et al., “The Wood Rot Ascomycete Xylaria polymorpha produces a novel GH78 glycoside hydrolase that exhibits L-Rhamnosidase and feruloyl esterase activities and releases hydroxycinnamic acids from lignocelluloses,” Applied Environmental Microbiology, vol. 78, no. 14, p. 4893, 2012. View at Google Scholar
  41. M. Scherer and R. Fischer, “Purification and characterization of laccase II of Aspergillus nidulans,” Archives of Microbiology, vol. 170, no. 2, pp. 78–84, 1998. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Junghanns, M. Moeder, G. Krauss, C. Martin, and D. Schlosser, “Degradation of the xenoestrogen nonylphenol by aquatic fungi and their laccases,” Microbiology, vol. 151, no. 1, pp. 45–57, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. M. De Jesus, A. M. Nicola, M. L. Rodrigues, G. Janbon, and A. Casadevall, “Capsular localization of the Cryptococcus neoformans polysaccharide component galactoxylomannan,” Eukaryotic Cell, vol. 8, no. 1, pp. 96–103, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. R. Ikeda, T. Sugita, E. S. Jacobson, and T. Shinoda, “Effects of melanin upon susceptibility of Cryptococcus to antifungals,” Microbiology and Immunology, vol. 47, no. 4, pp. 271–277, 2003. View at Google Scholar · View at Scopus
  45. A. Hatakka, “Biodegradation of lignin,” in Lignin, Humic Substances and Coal, M. Hofrichter and A. Steinbuchel, Eds., pp. 129–179, Wiley-VCH, Weinheim, Germany, 2001. View at Google Scholar
  46. L.-L. Kiiskinen, K. Kruus, M. Bailey, E. Ylösmäki, M. Siika-aho, and M. Saloheimo, “Expression of Melanocarpus albomyces laccase in Trichoderma reesei and characterization of the purified enzyme,” Microbiology, vol. 150, no. 9, pp. 3065–3074, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. G. J. Mander, H. Wang, E. Bodie et al., “Use of laccase as a novel, versatile reporter system in filamentous fungi,” Applied and Environmental Microbiology, vol. 72, no. 7, pp. 5020–5026, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. D. A. Wood, “Production, purification and properties of extracellular laccase of Agaricus bisporus,” Journal of General Microbiology, vol. 117, pp. 327–338, 1980. View at Google Scholar
  49. I. Marbach, E. Harel, and A. M. Mayer, “Molecular properties of extracellular Botrytis cinerea laccase,” Phytochemistry, vol. 23, no. 12, pp. 2713–2717, 1984. View at Google Scholar · View at Scopus
  50. P. Schneider, M. B. Caspersen, K. Mondorf et al., “Characterization of a Coprinus cinereus laccase,” Enzyme Microbial Technology, vol. 25, pp. 502–508, 1999. View at Google Scholar
  51. M. L. Niku-Paavola, E. Karhunen, P. Salola, and V. Raunio, “Ligninolytic enzymes of the white-rot fungus Phlebia radiata,” Biochemical Journal, vol. 254, no. 3, pp. 877–884, 1988. View at Google Scholar · View at Scopus
  52. G. Sannia, P. Giardina, and M. Luna, “Laccase from Pleurotus ostreatus,” Biotechnology Letters, vol. 8, no. 11, pp. 797–800, 1986. View at Google Scholar · View at Scopus
  53. J. Rogalski, T. Lundell, A. Leonowicz, and A. Hatakka, “Production of laccase, lignin peroxidase and manganese-dependent peroxidase by various strains of Trametes versicolor depending on culture conditions,” Acta Microbiologica Polonica, vol. 40, pp. 221–234, 1991. View at Google Scholar
  54. N. T. Dittmer, R. J. Suderman, H. Jiang et al., “Characterization of cDNAs encoding putative laccase-like multicopper oxidases and developmental expression in the tobacco hornworm, Manduca sexta, and the malaria mosquito, Anopheles gambiae,” Insect Biochemistry and Molecular Biology, vol. 34, no. 1, pp. 29–41, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. Y. Taprab, T. Johjima, Y. Maeda et al., “Symbiotic fungi produce laccases potentially involved in phenol degradation in fungus combs of fungus-growing termites in Thailand,” Applied and Environmental Microbiology, vol. 71, no. 12, pp. 7696–7704, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. M. E. Scharf, Z. J. Karl, A. Sethi, and D. G. Boucias, “Multiple levels of synergistic collaboration in termite lignocellulose digestion,” PLoS ONE, vol. 6, no. 7, Article ID e21709, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. J. Ni and G. Tokuda, “Lignocellulose-degrading enzymes from termites and their symbiotic microbiota,” Biotechnology Advances, vol. 31, pp. 838–850, 2013. View at Google Scholar
  58. M. C. Monteiro and M. E. A. De Carvalho, “Pulp bleaching using laccase from Trametes versacolor under high temperature and alkaline conditions,” Applied Biochemistry and Biotechnology Part A, vol. 70–72, pp. 983–993, 1998. View at Google Scholar · View at Scopus
  59. T. Nishida, K. Yoshinori, A. Mimura, and Y. Takahara, “Lignin biodegradation by wood-rotting fungi I. Screening of lignin-degrading fungi,” Mokuzai Gakkaishi, vol. 34, pp. 530–536, 1988. View at Google Scholar
  60. J. Luterek, L. Gianfreda, M. Wojtaś-Wasilewska et al., “Screening of the wood-rotting fungi for laccase production: induction by ferulic acid, partial purification, and immobilization of laccase from the high laccase-producing strain, Cerrena unicolor,” Acta Microbiologica Polonica, vol. 46, no. 3, pp. 297–311, 1997. View at Google Scholar · View at Scopus
  61. J. M. Harkin and J. R. Obst, “Syringaldazine, an effective reagent for detecting laccase and peroxidase in fungi,” Experientia, vol. 29, no. 4, pp. 381–387, 1973. View at Publisher · View at Google Scholar · View at Scopus
  62. E. De Jong, F. P. de Vries, J. A. Field, R. P. van der Zwan, and J. A. M. de Bont, “Isolation and screening of basidiomycetes with high peroxidative activity,” Mycological Research, vol. 12, pp. 1098–1104, 1992. View at Google Scholar
  63. C. Raghukumar, T. M. D'Souza, R. G. Thorn, and C. A. Reddy, “Lignin-modifying enzymes of Flavodon flavus, a basidiomycete isolated from a coastal marine environment,” Applied and Environmental Microbiology, vol. 65, no. 5, pp. 2103–2111, 1999. View at Google Scholar · View at Scopus
  64. M. H. Gold, J. K. Glenn, and M. Alic, “Use of polymeric dyes in lignin biodegradation assays,” Methods in Enzymology, vol. 161, pp. 74–78, 1988. View at Publisher · View at Google Scholar · View at Scopus
  65. G. Palmieri, P. Giardina, C. Bianco, B. Fontanella, and G. Sannia, “Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus,” Applied and Environmental Microbiology, vol. 66, no. 3, pp. 920–924, 2000. View at Publisher · View at Google Scholar · View at Scopus
  66. R. F. H. Dekker and A. M. Barbosa, “The effects of aeration and veratryl alcohol on the production of two laccases by the ascomycete Botryosphaeria sp,” Enzyme and Microbial Technology, vol. 28, no. 1, pp. 81–88, 2001. View at Publisher · View at Google Scholar · View at Scopus
  67. G. Palmieri, C. Bianco, G. Cennamo et al., “Purification, characterization, and functional role of a novel extracellular protease from Pleurotus ostreatus,” Applied and Environmental Microbiology, vol. 67, no. 6, pp. 2754–2759, 2001. View at Publisher · View at Google Scholar · View at Scopus
  68. J. L. Dong, Y. W. Zhang, R. H. Zhang, W. Z. Huang, and Y. Z. Zhang, “Influence of culture conditions on laccase production and isozyme patterns in the white-rot fungus Trametes gallica,” Journal of Basic Microbiology, vol. 45, no. 3, pp. 190–198, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. R. Gayazov and J. Rodakiewicz-Nowak, “Semi-continuous production of laccase by Phlebia radiata in different culture media,” Folia Microbiologica, vol. 41, no. 6, pp. 480–484, 1996. View at Google Scholar · View at Scopus
  70. R. F. H. Dekker, K. Y. Ling, and A. M. Barbosa, “A simple method for monitoring chromatography column eluates for laccase activity during enzyme purification,” Biotechnology Letters, vol. 22, no. 2, pp. 105–108, 2000. View at Publisher · View at Google Scholar · View at Scopus
  71. A. Piscitelli, P. Giardina, V. Lettera, C. Pezzella, G. Sannia, and V. Faraco, “Induction and transcriptional regulation of laccases in fungi,” Current Genomics, vol. 12, no. 2, pp. 104–112, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. E.-M. Ko, Y.-E. Leem, and H. T. Choi, “Purification and characterization of laccase isozymes from the white-rot basidiomycete Ganoderma lucidum,” Applied Microbiology and Biotechnology, vol. 57, no. 1-2, pp. 98–102, 2001. View at Publisher · View at Google Scholar · View at Scopus
  73. C. G. M. De Souza, G. K. Tychanowicz, D. F. De Souza, and R. M. Peralta, “Production of laccase isoforms by Pleurotus pulmonarius in response to presence of phenolic and aromatic compounds,” Journal of Basic Microbiology, vol. 44, no. 2, pp. 129–136, 2004. View at Publisher · View at Google Scholar · View at Scopus
  74. M. Mansur, T. Suárez, J. B. Fernández-Larrea, M. A. Brizuela, and A. E. González, “Identification of a laccase gene family in the new lignin-degrading basidiomycete CECT 20197,” Applied and Environmental Microbiology, vol. 63, no. 7, pp. 2637–2646, 1997. View at Google Scholar · View at Scopus
  75. A. M. Farnet, S. Criquet, S. Tagger, G. Gil, and J. Le Petit, “Purification, partial characterization, and reactivity with aromatic compounds of two laccases from Marasmius quercophilus strain 17,” Canadian Journal of Microbiology, vol. 46, no. 3, pp. 189–194, 2000. View at Google Scholar · View at Scopus
  76. S. X. Liu, J. L. Dong, and Y. Z. Zhang, “Analysis of laccase isozymes from Pleurotus osteatus,” Sichuan Da Xue Xue Bao (Natural Science Edition), vol. 37, pp. 769–771, 2000. View at Google Scholar
  77. P. E. Courty, M. Poletto, F. Duchaussoy, M. Buée, J. Garbaye, and F. Martin, “Gene transcription in Lactarius quietus-quercus petraea ectomycorrhizas from a forest soil,” Applied and Environmental Microbiology, vol. 74, no. 21, pp. 6598–6605, 2008. View at Publisher · View at Google Scholar · View at Scopus
  78. K. Brijwani, A. Rigdon, and V. Praveen vadlani, “Fungal laccases: production, function, and applications in food processing,” Enzyme Research, vol. 2010, Article ID 149748, 10 pages, 2010. View at Publisher · View at Google Scholar
  79. G. I. Zervakis, G. Venturella, and K. Papadopoulou, “Genetic polymorphism and taxonomic infrastructure of the Pleurotus eryngii species-complex as determined by RAPD analysis, isozyme profiles and ecomorphological characters,” Microbiology, vol. 147, no. 11, pp. 3183–3194, 2001. View at Google Scholar · View at Scopus
  80. E. Tanesaka, “Colonizing success of saprotrophic and ectomycorrhizal basidiomycetes on islands,” Mycologia, vol. 104, no. 2, pp. 345–352, 2012. View at Google Scholar
  81. J. A. Micales, M. R. Bonde, and G. L. Peterson, “Isozyme analysis in fungal taxonomy and molecular genetics,” in Handbook of Applied Mycology, vol. 4 of Fungal Biotechnology, pp. 57–79, 1992. View at Google Scholar
  82. K. Praveen, B. Viswanath, K. Y. Usha et al., “Lignolytic enzymes of a mushroom Stereum ostrea isolated from wood logs,” Enzyme Research, vol. 2011, Article ID 749518, 6 pages, 2011. View at Publisher · View at Google Scholar
  83. M. Heinzkill, L. Bech, T. Halkier, P. Schneider, and T. Anke, “Characterization of laccases and peroxidases from wood-rotting fungi (family Coprinaceae),” Applied and Environmental Microbiology, vol. 64, no. 5, pp. 1601–1606, 1998. View at Google Scholar · View at Scopus
  84. A. M. R. B. Xavier, D. V. Evtuguin, R. M. P. Ferreira, and F. L. Amado, “Laccase production for lignin oxidative activity,” in Proceedings of the 8th International Conference on Biotechnology in the Pulp and Paper Industry, pp. 4–8, Helsinki, Finland, June 2001.
  85. U. Kües and M. Rühl, “Multiple multi-copper oxidase gene families in basidiomycetes—what for?” Current Genomics, vol. 12, no. 2, pp. 72–94, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. J. A. Buswell, Y. Cai, and S.-T. Chang, “Effect of nutrient nitrogen and manganese on manganese peroxidase and laccase production by Lentinula (Lentinus) edodes,” FEMS Microbiology Letters, vol. 128, no. 1, pp. 81–88, 1995. View at Publisher · View at Google Scholar · View at Scopus
  87. A. F. D. Vasconcelos, A. M. Barbosa, R. F. H. Dekker, I. S. Scarminio, and M. I. Rezende, “Optimization of laccase production by Botryosphaeria sp. in the presence of veratryl alcohol by the response-surface method,” Process Biochemistry, vol. 35, no. 10, pp. 1131–1138, 2000. View at Publisher · View at Google Scholar · View at Scopus
  88. C. Srinivasan, T. M. D'Souza, K. Boominathan, and C. A. Reddy, “Demonstration of laccase in the white rot basidiomycete Phanerochaete chrysosporium BKM-F1767,” Applied and Environmental Microbiology, vol. 61, no. 12, pp. 4274–4277, 1995. View at Google Scholar · View at Scopus
  89. T. M. D'Souza, C. S. Merritt, and C. A. Reddy, “Lignin-modifying enzymes of the white rot basidiomycete Ganoderma lucidum,” Applied and Environmental Microbiology, vol. 65, no. 12, pp. 5307–5313, 1999. View at Google Scholar · View at Scopus
  90. A. A. S. Sinegani, G. Emtiazia, and Hajrasuliha, “Production of laccase by Aspergillus terreus and some basidiomycetes in contaminated media with aromatic compounds,” Asian Journal of Microbiology, Biotechnology and Environmental Sciences, vol. 2, pp. 1–4, 2000. View at Google Scholar
  91. R. Periasamy and T. Palvannan, “Optimization of laccase production by Pleurotus ostreatus IMI 395545 using the Taguchi DOE methodology,” Journal of Basic Microbiology, vol. 50, no. 6, pp. 548–556, 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. D. S. Arora and P. K. Gill, “Laccase production by some white rot fungi under different nutritional conditions,” Bioresource Technology, vol. 73, no. 3, pp. 283–285, 2000. View at Publisher · View at Google Scholar · View at Scopus
  93. A. T. Thiruchelvam and J. A. Ramsay, “Growth and laccase production kinetics of Trametes versicolor in a stirred tank reactor,” Applied Microbiology and Biotechnology, vol. 74, no. 3, pp. 547–554, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. V. L. Papinutti, L. A. Diorio, and F. Forchiassin, “Production of laccase and manganese peroxidase by Fomes sclerodermeus grown on wheat bran,” Journal of Industrial Microbiology & Biotechnology, vol. 30, no. 3, pp. 157–160, 2003. View at Google Scholar · View at Scopus
  95. P. J. Strong, “Improved laccase production by Trametes pubescens MB89 in distillery wastewaters,” Enzyme Research, vol. 2011, Article ID 379176, 8 pages, 2011. View at Publisher · View at Google Scholar
  96. G. Singh, N. Ahuja, M. Batish, N. Capalash, and P. Sharma, “Biobleaching of wheat straw-rich soda pulp with alkalophilic laccase from γ-proteobacterium JB: optimization of process parameters using response surface methodology,” Bioresource Technology, vol. 99, no. 16, pp. 7472–7479, 2008. View at Publisher · View at Google Scholar · View at Scopus
  97. M. Ye, G. Li, W. Q. Liang, and Y. H. Liu, “Molecular cloning and characterization of a novel metagenome-derived multicopper oxidase with alkaline laccase activity and highly soluble expression,” Applied Microbiology and Biotechnology, vol. 87, no. 3, pp. 1023–1031, 2010. View at Publisher · View at Google Scholar · View at Scopus
  98. F. Zadrazil, A. Gonser, and E. Lang, “Influence of incubation temperature on the secretion of extracellular ligninolytic enzymes of Pleurotus sp. and Dichomitus squalens into soil,” in Proceedings of the Conference on Enzymes in the Environment: Activity, Ecology and Applications, pp. 12–16, Granada, Spain, July1999.
  99. A. Chernykh, N. Myasoedova, M. Kolomytseva et al., “Laccase isoforms with unusual properties from the basidiomycete Steccherinum ochraceum strain 1833,” Journal of Applied Microbiology, vol. 105, no. 6, pp. 2065–2075, 2008. View at Publisher · View at Google Scholar · View at Scopus
  100. K. Hildén, T. K. Hakala, and T. Lundell, “Thermotolerant and thermostable laccases,” Biotechnology Letters, vol. 31, no. 8, pp. 1117–1128, 2009. View at Publisher · View at Google Scholar · View at Scopus
  101. L. Levin, F. Forchiassin, and A. M. Ramos, “Copper induction of lignin-modifying enzymes in the white-rot fungus Trametes trogii,” Mycologia, vol. 94, no. 3, pp. 377–383, 2002. View at Google Scholar · View at Scopus
  102. P. J. Collins and A. D. W. Dobson, “Extracellular lignin and manganese peroxidase production by the white-rot fungus Coriolus versicolor 290,” Biotechnology Letters, vol. 17, no. 9, pp. 989–992, 1995. View at Publisher · View at Google Scholar · View at Scopus
  103. K. Perumal, Biochemical studies of lignolytic enzymes of Gonoderma lucidum, a white rot fungus and its application in treatment of paper mill effluent [Ph.D. thesis], University of Madras, Madras, India, 1997.
  104. J. R. P. Cavallazzi, C. M. Kasuya, and M. A. Soares, “Screening of inducers for laccase production by Lentinula edodes in liquid medium,” Brazilian Journal of Microbiology, vol. 36, no. 4, pp. 383–387, 2005. View at Google Scholar · View at Scopus
  105. D. S. Arora and P. Rampal, “Laccase production by some Phlebia species,” Journal of Basic Microbiology, vol. 42, pp. 295–301, 2002. View at Google Scholar
  106. T. Palvannan and P. Sathishkumar, “Production of laccase from Pleurotus florida NCIM 1243 using Plackett-Burman design and response surface methodology,” Journal of Basic Microbiology, vol. 50, no. 4, pp. 325–335, 2010. View at Publisher · View at Google Scholar · View at Scopus
  107. M. A. A. Da Cunha, A. M. Barbosa, E. C. Giese, and R. F. H. Dekker, “The effect of carbohydrate carbon sources on the production of constitutive and inducible laccases by Botryosphaeria sp,” Journal of Basic Microbiology, vol. 43, no. 5, pp. 385–392, 2003. View at Publisher · View at Google Scholar · View at Scopus
  108. D. D'Souza-Ticlo, A. K. Verma, M. Mathew, and C. Raghukumar, “Effect of nutrient nitrogen on laccase production, its isozyme pattern and effluent decolorization by the fungus NIOCC#2a, isolated from mangrove wood,” Indian Journal of Marine Sciences, vol. 35, no. 4, pp. 364–372, 2006. View at Google Scholar · View at Scopus
  109. M. S. Revankar and S. S. Lele, “Increased production of extracellular laccase by the white rot fungus Coriolus versicolor MTCC 138,” World Journal of Microbiology and Biotechnology, vol. 22, no. 9, pp. 921–926, 2006. View at Publisher · View at Google Scholar · View at Scopus
  110. J. Sun, R.-H. Peng, A.-S. Xiong et al., “Secretory expression and characterization of a soluble laccase from the Ganoderma lucidum strain 7071-9 in Pichia pastoris,” Molecular Biology Reports, vol. 39, pp. 3807–3814, 2012. View at Publisher · View at Google Scholar · View at Scopus
  111. G. F. Leatham and T. Kent Kirk, “Regulation of ligninolytic activity by nutrient nitrogen in white-rot basidiomycetes,” FEMS Microbiology Letters, vol. 16, no. 1, pp. 65–67, 1983. View at Publisher · View at Google Scholar · View at Scopus
  112. G. Janusz, J. Rogalski, M. Barwińska, and J. Szczodrak, “Effects of culture conditions on production of extracellular laccase by Rhizoctonia praticola,” Polish Journal of Microbiology, vol. 55, no. 4, pp. 309–319, 2006. View at Google Scholar · View at Scopus
  113. S. Chen, D. Ma, W. Ge, and J. A. Buswell, “Induction of laccase activity in the edible straw mushroom, Volvariella volvacea,” FEMS Microbiology Letters, vol. 218, no. 1, pp. 143–148, 2003. View at Publisher · View at Google Scholar · View at Scopus
  114. P. Baldrian and J. Gabriel, “Copper and cadmium increase laccase activity in Pleurotus ostreatus,” FEMS Microbiology Letters, vol. 206, no. 1, pp. 69–74, 2002. View at Publisher · View at Google Scholar · View at Scopus
  115. S. C. Lo, Y. S. Ho, and J. A. Buswell, “Effect of phenolic monomers on the production of laccases by the edible mushroom Pleurotus sajor-caju, and partial characterization of a major laccase component,” Mycologia, vol. 93, no. 3, pp. 413–421, 2002. View at Google Scholar · View at Scopus
  116. M. E. Eugenio, J. M. Carbajo, J. A. Martín, A. E. González, and J. C. Villar, “Laccase production by Pycnoporus sanguineus under different culture conditions,” Journal of Basic Microbiology, vol. 49, no. 5, pp. 433–440, 2009. View at Publisher · View at Google Scholar · View at Scopus
  117. R. K. Sharma and D. S. Arora, “Production of lignocellulolytic enzymes and enhancement of in vitro digestibility during solid state fermentation of wheat straw by Phlebia floridensis,” Bioresource Technology, vol. 101, no. 23, pp. 9248–9253, 2010. View at Publisher · View at Google Scholar · View at Scopus
  118. J. K. Gupta, S. G. Hamp, J. A. Buswell, and K. E. Eriksson, “Metabolism of trans-ferulic acid by the white-rot fungus Sporotrichum pulverulentum,” Archives of Microbiology, vol. 128, no. 4, pp. 349–354, 1981. View at Google Scholar · View at Scopus
  119. S. B. Pointing, E. B. G. Jones, and L. L. P. Vrijmoed, “Optimization of laccase production by Pycnoporus sanguineus in submerged liquid culture,” Mycologia, vol. 92, no. 1, pp. 139–144, 2000. View at Google Scholar · View at Scopus
  120. D. S. Yaver, F. Xu, E. J. Golightly et al., “Purification, characterization, molecular cloning, and expression of two laccase genes from the white rot basidiomycete Trametes villosa,” Applied and Environmental Microbiology, vol. 62, no. 3, pp. 834–841, 1996. View at Google Scholar · View at Scopus
  121. P. J. Collins and A. D. W. Dobson, “Regulation of laccase gene transcription in Trametes versicolor,” Applied and Environmental Microbiology, vol. 63, no. 9, pp. 3444–3450, 1997. View at Google Scholar · View at Scopus
  122. D. M. Soden and A. D. W. Dobson, “Differential regulation of laccase gene expression in Pleurotus sajor-caju,” Microbiology, vol. 147, no. 7, pp. 1755–1763, 2001. View at Google Scholar · View at Scopus
  123. A. Sethuraman, D. E. Akin, J. G. Eisele, and K.-E. L. Eriksson, “Effect of aromatic compounds on growth and ligninolytic enzyme production of two white rot fungi Ceriporiopsis subvermispora and Cyathus stercoreus,” Canadian Journal of Microbiology, vol. 44, no. 9, pp. 872–885, 1998. View at Publisher · View at Google Scholar · View at Scopus
  124. A. M. Barbosa, R. F. H. Dekker, and G. E. St. Hardy, “Veratryl alcohol as an inducer of laccase by an ascomycete, Botryosphaeria sp., when screened on the polymeric dye Poly R-478,” Letters in Applied Microbiology, vol. 23, no. 2, pp. 93–96, 1996. View at Google Scholar · View at Scopus
  125. S. C. Froehner and K. E. Eriksson, “Purification and properties of Neurospora crassa laccase,” Journal of Bacteriology, vol. 120, no. 1, pp. 458–465, 1974. View at Google Scholar · View at Scopus
  126. I.-Y. Lee, K.-H. Jung, C.-H. Lee, and Y.-H. Park, “Enhanced production of laccase in Trametes vesicolor by the addition of ethanol,” Biotechnology Letters, vol. 21, no. 11, pp. 965–968, 1999. View at Publisher · View at Google Scholar · View at Scopus
  127. S. Dhawan and R. C. Kuhad, “Effect of amino acids and vitamins on laccase production by the bird's nest fungus Cyathus bulleri,” Bioresource Technology, vol. 84, no. 1, pp. 35–38, 2002. View at Publisher · View at Google Scholar · View at Scopus
  128. M. T. Cambria, S. Ragusa, V. Calabrese, and A. Cambria, “Enhanced laccase production in white-rot fungus Rigidoporus lignosus by the addition of selected phenolic and aromatic compounds,” Applied Biochemistry and Biotechnology, vol. 163, no. 3, pp. 415–422, 2011. View at Publisher · View at Google Scholar · View at Scopus
  129. V. Elisashvili and E. Kachlishvili, “Physiological regulation of laccase and manganese peroxidase production by white-rot Basidiomycetes,” Journal of Biotechnology, vol. 144, no. 1, pp. 37–42, 2009. View at Publisher · View at Google Scholar · View at Scopus
  130. J. A. Saraiva, A. P. M. Tavares, and A. M. R. B. Xavier, “Effect of the inducers veratryl alcohol, xylidine, and ligninosulphonates on activity and thermal stability and inactivation kinetics of laccase from Trametes versicolor,” Applied Biochemistry and Biotechnology, vol. 167, no. 4, pp. 685–693, 2012. View at Google Scholar
  131. V. Elisashvili, E. Kachlishvili, T. Khardziani, and S. N. Agathos, “EVect of aromatic compounds on the production of laccase and manganese peroxidase by white-rot basidiomycetes,” Journal of Industrial Microbiology & Biotechnology, vol. 37, no. 10, pp. 1091–1096, 2010. View at Publisher · View at Google Scholar · View at Scopus
  132. T. Hadibarata, M. M. Zubir, Rubiyatno et al., “Degradation and transformation of anthracene by white-rot fungus Armillaria sp. F022,” Folia Microbiologica, vol. 58, no. 5, pp. 385–391, 2013. View at Google Scholar
  133. G. M. Gadd and L. De Rome, “Biosorption of copper by fungal melanin,” Applied Microbiology and Biotechnology, vol. 29, no. 6, pp. 610–617, 1988. View at Google Scholar · View at Scopus
  134. S. Diwaniyan, K. K. Sharma, and R. C. Kuhad, “Laccase from an alkali-tolerant basidiomycetes Crinipellis sp. RCK-1: production optimization by response surface methodology,” Journal of Basic Microbiology, vol. 52, no. 4, pp. 397–407, 2012. View at Google Scholar
  135. C. Galhaup and D. Haltrich, “Enhanced formation of laccase activity by the white-rot fungus Trametes pubescens in the presence of copper,” Applied Microbiology and Biotechnology, vol. 56, no. 1-2, pp. 225–232, 2001. View at Publisher · View at Google Scholar · View at Scopus
  136. M. Huber and K. Lerch, “The influence of copper on the induction of tyrosinase and laccase in Neurospora crassa,” FEBS Letters, vol. 219, no. 2, pp. 335–338, 1987. View at Google Scholar · View at Scopus
  137. J. K. Dittmer, N. J. Patel, S. W. Dhawale, and S. S. Dhawale, “Production of multiple laccase isoforms by Phanerochaete chryosporium grown under nutrient sufficiency,” FEMS Microbiology Letters, vol. 149, no. 1, pp. 65–70, 1997. View at Publisher · View at Google Scholar · View at Scopus
  138. S. Chen, W. Ge, and J. A. Buswell, “Biochemical and molecular characterization of a laccase from the edible straw mushroom, Volvariella volvacea,” European Journal of Biochemistry, vol. 271, no. 2, pp. 318–328, 2004. View at Publisher · View at Google Scholar · View at Scopus
  139. Z. T. Xing, J. H. Cheng, Q. Tan, and Y. J. Pan, “Effect of nutritional parameters on laccase production by the culinary and medicinal mushroom, Grifola frondosa,” World Journal of Microbiology and Biotechnology, vol. 22, no. 8, pp. 799–806, 2006. View at Publisher · View at Google Scholar · View at Scopus
  140. P. Giardina, G. Palmieri, G. Cennamo et al., “Protein and gene structure of a blue laccase from Pleurotus ostreatus,” in Proceedings of the 7th International Conference on Biotechnology in the Pulp and Paper Industry, pp. B191–B194, Helsinki, Finland, June 1998. View at Scopus
  141. Z. Liu, D. Zhang, Z. Hua, J. Li, G. Du, and J. Chen, “A newly isolated Paecilomyces sp. WSH-L07 for laccase production: isolation, identification, and production enhancement by complex inducement,” Journal of Industrial Microbiology & Biotechnology, vol. 36, no. 10, pp. 1315–1321, 2009. View at Publisher · View at Google Scholar · View at Scopus
  142. W. Du, C. Sun, J. Yu et al., “Effect of synergistic inducement on the production of laccase by a novel Shiraia bambusicola strain GZ11K2,” Applied Biochemistry and Biotechnology, vol. 168, no. 8, pp. 2376–2386, 2012. View at Google Scholar
  143. A. Kocyigit, M. B. Pazarbasi, I. Yasa, G. Ozdemir, and I. Karaboz, “Production of laccase from Trametes trogii TEM H2 a newly isolated white-rot fungus by air sampling,” Journal of Basic Microbiology, vol. 52, pp. 661–669, 2012. View at Google Scholar
  144. S. Shankar and S. Shikha, “Laccase production and enzymatic modification of lignin by a novel Peniophora sp,” Applied Biochemistry and Biotechnology, vol. 166, no. 4, pp. 1082–1094, 2012. View at Publisher · View at Google Scholar · View at Scopus
  145. I. Robene-Soustrade and B. Lung-Escarmant, “Laccase isoenzyme patterns of European Armillaria species from culture filtrates and infected woody plant tissues,” European Journal of Forest Pathology, vol. 27, no. 2, pp. 105–114, 1997. View at Google Scholar · View at Scopus
  146. C. Eggert, U. Temp, and K.-E. L. Eriksson, “The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase,” Applied and Environmental Microbiology, vol. 62, no. 4, pp. 1151–1158, 1996. View at Google Scholar · View at Scopus
  147. S. X. F. Lu, C. L. Jones, and G. T. Lonergan, “Correlation between fungal morphology and laccase expression under the influence of cellobiose induction,” in Proceedings of the 10th International Biotechnology Symposium and the 9th International Symposium on Yeasts, Sydney, Australia, 1996, Poster session 1.
  148. A. M. V. Garzillo, M. C. Colao, C. Caruso, C. Caporale, D. Celletti, and V. Buonocore, “Laccase from the white-rot fungus Trametes trogii,” Applied Microbiology and Biotechnology, vol. 49, no. 5, pp. 545–551, 1998. View at Publisher · View at Google Scholar · View at Scopus
  149. L. Gianfreda, F. Xu, and J.-M. Bollag, “Laccases: a useful group of oxidoreductive enzymes,” Bioremediation Journal, vol. 3, no. 1, pp. 1–25, 1999. View at Google Scholar · View at Scopus
  150. I. Marbach, E. Harel, and A. M. Mayer, “Pectin, a second inducer for laccase production by Botrytis cinerea,” Phytochemistry, vol. 24, no. 11, pp. 2559–2561, 1985. View at Google Scholar · View at Scopus
  151. E. Grotewold, G. E. Taccioli, G. O. Aisemberg, and N. D. Judewicz, “Early response and induced tolerance to cycloheximide in Neurospora crassa,” Current Genetics, vol. 15, no. 6, pp. 429–434, 1989. View at Google Scholar · View at Scopus
  152. A. Leonowicz and J. Trojanowski, “Induction of laccase by ferulic acid in Basidiomycetes,” Acta Biochimica Polonica, vol. 22, no. 4, pp. 291–295, 1975. View at Google Scholar · View at Scopus
  153. J.-M. Bollag and A. Leonowicz, “Comparative studies of extracellular fungal laccases,” Applied and Environmental Microbiology, vol. 48, no. 4, pp. 849–854, 1984. View at Google Scholar · View at Scopus
  154. M. A. Pickard, R. Roman, R. Tinoco, and R. Vazquez-Duhalt, “Polycyclic aromatic hydrocarbon metabolism by white rot fungi and oxidation by Coriolopsis gallica UAMH 8260 laccase,” Applied and Environmental Microbiology, vol. 65, no. 9, pp. 3805–3809, 1999. View at Google Scholar · View at Scopus
  155. M. Fenice, G. Giovannozzi Sermanni, F. Federici, and A. D'Annibale, “Submerged and solid-state production of laccase and Mn-peroxidase by Panus tigrinus on olive mill wastewater-based media,” Journal of Biotechnology, vol. 100, no. 1, pp. 77–85, 2003. View at Publisher · View at Google Scholar · View at Scopus
  156. Y. Xiao, S. Zhang, Q. Hu, W. Jiang, Pu Ch, and Y. Shi, “Immobilization of fungal laccase on chitosan and its use in phenolic effluents treatment,” Weishengwu Xuebao, vol. 43, pp. 245–250, 2003. View at Google Scholar
  157. C. G. Dosoretz, A. H.-C. Chen, and H. E. Grethlein, “Effect of oxygenation conditions on submerged cultures of Phanerochaete chrysosporium,” Applied Microbiology and Biotechnology, vol. 34, no. 1, pp. 131–137, 1990. View at Google Scholar · View at Scopus
  158. N. Rothschild, Y. Hadar, and C. Dosoretz, “Ligninolytic system formation by Phanerochaete chrysosporium in air,” Applied and Environmental Microbiology, vol. 61, no. 5, pp. 1833–1838, 1995. View at Google Scholar · View at Scopus
  159. E. N. Dombrovskaya and S. S. Kostyshin, “Effects of surfactants of different ionic nature on the ligninolytic enzyme complexes of the white-rot fungi Pleurotus floridae and Phellinus igniarius,” Biochemistry, vol. 61, no. 2, pp. 215–220, 1996. View at Google Scholar · View at Scopus
  160. A. Lomascolo, E. Record, I. Herpoël-Gimbert et al., “Overproduction of laccase by a monokaryotic strain of Pycnoporus cinnabarinus using ethanol as inducer,” Journal of Applied Microbiology, vol. 94, no. 4, pp. 618–624, 2003. View at Publisher · View at Google Scholar · View at Scopus
  161. R. Blaich and K. Esser, “Function of enzymes in wood destroying fungi. II. Multiple forms of laccase in white rot fungi,” Archives of Microbiology, vol. 103, no. 3, pp. 271–277, 1975. View at Google Scholar · View at Scopus
  162. P. Nandal, S. R. Ravella, and R. C. Kuhad, “Laccase production by Coriolopsis caperata RCK2011: optimization under solid state fermentation by Taguchi DOE methodology,” Scientific Reports, vol. 3, p. 1386, 2013. View at Publisher · View at Google Scholar
  163. A. Jaouani, M. G. Tabka, and M. J. Penninckx, “Lignin modifying enzymes of Coriolopsis polyzona and their role in olive oil mill wastewaters decolourisation,” Chemosphere, vol. 62, no. 9, pp. 1421–1430, 2006. View at Publisher · View at Google Scholar · View at Scopus
  164. J. C. Meza, R. Auria, A. Lomascolo, J.-C. Sigoillot, and L. Casalot, “Role of ethanol on growth, laccase production and protease activity in Pycnoporus cinnabarinus ss3,” Enzyme and Microbial Technology, vol. 41, no. 1-2, pp. 162–168, 2007. View at Publisher · View at Google Scholar · View at Scopus
  165. G. Palmieri, P. Giardina, C. Bianco, A. Scaloni, A. Capasso, and G. Sannia, “A novel white laccase from Pleurotus ostreatus,” Journal of Biological Chemistry, vol. 272, no. 50, pp. 31301–31307, 1997. View at Publisher · View at Google Scholar · View at Scopus
  166. G. Palmieri, G. Cennamo, V. Faraco, A. Amoresano, G. Sannia, and P. Giardina, “Atypical laccase isoenzymes from copper supplemented Pleurotus ostreatus cultures,” Enzyme and Microbial Technology, vol. 33, no. 2-3, pp. 220–230, 2003. View at Publisher · View at Google Scholar · View at Scopus
  167. A.-M. Farnet, S. Criquet, M. Cigna, G. É. Gil, and E. Ferré, “Purification of a laccase from Marasmius quercophilus induced with ferulic acid: reactivity towards natural and xenobiotic aromatic compounds,” Enzyme and Microbial Technology, vol. 34, no. 6, pp. 549–554, 2004. View at Publisher · View at Google Scholar · View at Scopus
  168. A.-M. Farnet, S. Tagger, and J. Le Petit, “Effects of copper and aromatic inducers on the laccases of the white-rot fungus Marasmius quercophilus,” Comptes Rendus de l'Academie des Sciences, vol. 322, no. 6, pp. 499–503, 1999. View at Publisher · View at Google Scholar · View at Scopus
  169. F. Xu, W. S. Shin, S. H. Brown, J. A. Wahleithner, U. M. Sundaram, and E. I. Solomon, “A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity and stability,” Biochimica et Biophysica Acta, vol. 1292, pp. 303–311, 1996. View at Google Scholar
  170. D. S. Yaver, M. D. C. Overjero, F. Xu et al., “Molecular characterization of laccase genes from the basidiomycete Coprinus cinereus and heterologous expression of the laccase Lcc1,” Applied and Environmental Microbiology, vol. 65, no. 11, pp. 4943–4948, 1999. View at Google Scholar · View at Scopus
  171. F. Xu, “Dioxygen reactivity of laccase: dependence on laccase source, pH, and anion inhibition,” Applied Biochemistry and Biotechnology Part A, vol. 95, no. 2, pp. 125–133, 2001. View at Publisher · View at Google Scholar · View at Scopus
  172. F. Xu, “Effects of redox potential and hydroxide inhibition on the pH activity profile of fungal laccases,” Journal of Biological Chemistry, vol. 272, no. 2, pp. 924–928, 1997. View at Google Scholar · View at Scopus
  173. A. M. Garzillo, M. C. Colao, V. Buonocore et al., “Structural and kinetic characterization of native laccases from Pleurotus ostreatus, Rigidoporus lignosus, and Trametes trogii,” Journal of Protein Chemistry, vol. 20, no. 3, pp. 191–201, 2001. View at Publisher · View at Google Scholar · View at Scopus
  174. B. Chefetz, Y. Chen, and Y. Hadar, “Purification and characterization of laccase from Chaetomium thermophilium and its role in humification,” Applied and Environmental Microbiology, vol. 64, no. 9, pp. 3175–3179, 1998. View at Google Scholar · View at Scopus
  175. H. Jung, F. Xu, and K. Li, “Purification and characterization of laccase from wood-degrading fungus Trichophyton rubrum LKY-7,” Enzyme and Microbial Technology, vol. 30, no. 2, pp. 161–168, 2002. View at Publisher · View at Google Scholar · View at Scopus
  176. H. Palonen, M. Saloheimo, L. Viikari, and K. Kruus, “Purification, characterization and sequence analysis of a laccase from the ascomycete Mauginiella sp,” Enzyme and Microbial Technology, vol. 33, no. 6, pp. 854–862, 2003. View at Publisher · View at Google Scholar · View at Scopus
  177. U. A. Germann and K. Lerch, “Isolation and partial nucleotide sequence of the laccase gene from Neurospora crassa: amino acid sequence homology of the protein to human ceruloplasmin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 83, no. 23, pp. 8854–8858, 1986. View at Google Scholar · View at Scopus
  178. R. Aramayo and W. E. Timberlake, “Sequence and molecular structure of the Aspergillus nidulans yA (laccase I) gene,” Nucleic Acids Research, vol. 18, no. 11, p. 3415, 1990. View at Google Scholar · View at Scopus
  179. Y. Kojima, Y. Kita, and Y. Tsukuda, “DNA for expression and secretion,” European Patent Application, EP0388166, 1990.
  180. M. Saloheimo, M.-L. Niku-Paavola, and J. K. C. Knowles, “Isolation and structural analysis of the laccase gene from the lignin-degrading fungus Phlebia radiata,” Journal of General Microbiology, vol. 137, no. 7, pp. 1537–1544, 1991. View at Google Scholar · View at Scopus
  181. C. Galhaup, S. Goller, C. K. Peterbauer, J. Strauss, and D. Haltrich, “Characterization of the major laccase isoenzyme from Trametes pubescens and regulation of its synthesis by metal ions,” Microbiology, vol. 148, no. 7, pp. 2159–2169, 2002. View at Google Scholar · View at Scopus
  182. F. Hong, N. Q. Meinander, and L. J. Jönsson, “Fermentation strategies for improved heterologous expression of laccase in Pichia pastoris,” Biotechnology and Bioengineering, vol. 79, no. 4, pp. 438–449, 2002. View at Publisher · View at Google Scholar · View at Scopus
  183. R. M. Berka, S. H. Brown, F. Xu, P. Schneider, K. M. Oxenboll, and D. A. Aaslyng, “Purified Myceliophthora laccases and nucleic acids encoding same,” USA Patent Application, US5981243, 1997.
  184. E. Record, P. J. Punt, M. Chamkha, M. Labat, C. A. M. J. J. Van Den Hondel, and M. Asther, “Expression of the Pycnoporus cinnabarinus laccase gene in Aspergillus niger and characterization of the recombinant enzyme,” European Journal of Biochemistry, vol. 269, no. 2, pp. 602–609, 2002. View at Publisher · View at Google Scholar · View at Scopus
  185. D. M. Soden, J. O'Callaghan, and A. D. W. Dobson, “Molecular cloning of a laccase isozyme gene from Pleurotus sajor-caju and expression in the heterologous Pichia pastoris host,” Microbiology, vol. 148, no. 12, pp. 4003–4014, 2002. View at Google Scholar · View at Scopus
  186. C. Sigoillot, E. Record, V. Belle et al., “Natural and recombinant fungal laccases for paper pulp bleaching,” Applied Microbiology and Biotechnology, vol. 64, no. 3, pp. 346–352, 2004. View at Publisher · View at Google Scholar · View at Scopus
  187. M. B. Kurtz and S. P. Champe, “Purification and characterization of conidial laccase of Aspergillus nidulans,” Journal of Bacteriology, vol. 151, no. 3, pp. 1338–1345, 1982. View at Google Scholar
  188. M. Paloheimo, L. Valtakari, L. Puranen et al., “Novel laccase enzymes and their uses,” patent WO/2006/032724, 2006.
  189. C. Madzak, L. Otterbein, M. Chamkha et al., “Heterologous production of a laccase from the basidiomycete Pycnoporus cinnabarinus in the dimorphic yeast Yarrowia lipolytica,” FEMS Yeast Research, vol. 5, no. 6-7, pp. 635–646, 2005. View at Publisher · View at Google Scholar · View at Scopus
  190. W. Liu, Y. Chao, S. Liu, H. Bao, and S. Qian, “Molecular cloning and characterization of a laccase gene from the basidiomycete Fome lignosus and expression in Pichia pastoris,” Applied Microbiology and Biotechnology, vol. 63, no. 2, pp. 174–181, 2003. View at Publisher · View at Google Scholar · View at Scopus
  191. P. Cassland and L. J. Jönsson, “Characterization of a gene encoding Trametes versicolor laccase A and improved heterologous expression in Saccharomyces cerevisiae by decreased cultivation temperature,” Applied Microbiology and Biotechnology, vol. 52, no. 3, pp. 393–400, 1999. View at Publisher · View at Google Scholar · View at Scopus
  192. M. K. Aalto, H. Ronne, and S. Keranen, “Yeast syntaxins Sso1p and Sso2p belong to a family of related membrane proteins that function in vesicular transport,” The EMBO Journal, vol. 12, no. 11, pp. 4095–4104, 1993. View at Google Scholar · View at Scopus
  193. S. Larsson, P. Cassland, and L. J. Jönsson, “Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase,” Applied and Environmental Microbiology, vol. 67, no. 3, pp. 1163–1170, 2001. View at Publisher · View at Google Scholar · View at Scopus
  194. L. F. Larrondo, M. Avila, L. Salas, D. Cullen, and R. Vicuña, “Heterologous expression of laccase cDNA from Ceriporiopsis subvermispora yields copper-activated apoprotein and complex isoform patterns,” Microbiology, vol. 149, no. 5, pp. 1177–1182, 2003. View at Publisher · View at Google Scholar · View at Scopus
  195. A. Uldschmid, R. Dombi, and K. Marbach, “Identification and functional expression of ctaA, a P-type ATPase gene involved in copper trafficking in Trametes versicolor,” Microbiology, vol. 149, no. 8, pp. 2039–2048, 2003. View at Google Scholar · View at Scopus
  196. T. Bulter, M. Alcalde, V. Sieber, P. Meinhold, C. Schlachtbauer, and F. H. Arnold, “Functional expression of a fungal laccase in Saccharomyces cerevisiae by directed evolution,” Applied Environmental Microbiology, vol. 69, pp. 987–995, 2003. View at Google Scholar
  197. A. A. Leontievsky, T. Vares, P. Lankinen et al., “Blue and yellow laccases of ligninolytic fungi,” FEMS Microbiology Letters, vol. 156, no. 1, pp. 9–14, 1997. View at Publisher · View at Google Scholar · View at Scopus
  198. G. Palmieri, P. Giardina, C. Bianco, and G. Sannia, “A novel white laccase from Pleurotus ostreatus,” in Proceedings of the 7th International Conference on Biotechnology in the Pulp and Paper Industry, pp. A93–A96, Vancouver, Canada, June 1998. View at Scopus
  199. R. Bourbonnais and M. G. Paice, “Enzymatic delignification of kraft pulp using laccase and a mediator,” Tappi Journal, vol. 79, no. 6, pp. 199–204, 1996. View at Google Scholar · View at Scopus
  200. F. S. Archibald, R. Bourbonnais, L. Jurasek, M. G. Paice, and I. D. Reid, “Kraft pulp bleaching and delignification by Trametes versicolor,” Journal of Biotechnology, vol. 53, no. 2-3, pp. 215–236, 1997. View at Publisher · View at Google Scholar · View at Scopus
  201. R. Bourbonnais, M. G. Paice, I. D. Reid, P. Lanthier, and M. Yaguchi, “Lignin oxidation by laccase isozymes from Trametes versicolor and role of the mediator 2,2′-azinobis(3-ethylbenzthiazoline-6-sulfonate) in kraft lignin depolymerization,” Applied and Environmental Microbiology, vol. 61, no. 5, pp. 1876–1880, 1995. View at Google Scholar · View at Scopus
  202. R. Campos, A. Kandelbauer, K. H. Robra, A. Cavaco-Paulo, and G. M. Gübitz, “Indigo degradation with purified laccases from Trametes hirsuta and Sclerotium rolfsii,” Journal of Biotechnology, vol. 89, no. 2-3, pp. 131–139, 2001. View at Publisher · View at Google Scholar · View at Scopus
  203. T. Onuki, M. Nogucji, and J. Mitamura, “Oxidative hair dye composition containing laccase,” Pat Int Appl WO 0037, 030. Chemical Abstracts, vol. 133, p. 78994m, 2000.
  204. P. Manzanares, S. Fajardo, and C. Martin, “Production of ligninolytic activities when treating paper pulp effluents by Trametes versicolor,” Journal of Biotechnology, vol. 43, no. 2, pp. 125–132, 1995. View at Publisher · View at Google Scholar · View at Scopus
  205. C. A. Reddy and Z. Mathew, “Bioremediation potential of white rot fungi,” in Fungi in Bioremediation, G. M. Gadd, Ed., Cambridge University Press, Cambridge, UK, 2001. View at Google Scholar
  206. M. Alexander, Biodegradation and Bioremediation, Academic Press, San Diego, Calif, USA, 1994.
  207. J.-M. Bollag, H.-L. Chu, M. A. Rao, and L. Gianfreda, “Enzymatic oxidative transformation of chlorophenol mixtures,” Journal of Environmental Quality, vol. 32, no. 1, pp. 63–69, 2003. View at Google Scholar · View at Scopus
  208. E. Torres, I. Bustos-Jaimes, and S. Le Borgne, “Potential use of oxidative enzymes for the detoxification of organic pollutants,” Applied Catalysis B, vol. 46, no. 1, pp. 1–15, 2003. View at Publisher · View at Google Scholar · View at Scopus
  209. N. N. Pozdnyakova, J. Rodakiewicz-Nowak, and O. V. Turkovskaya, “Catalytic properties of yellow laccase from Pleurotus ostreatus D1,” Journal of Molecular Catalysis B, vol. 30, no. 1, pp. 19–24, 2004. View at Publisher · View at Google Scholar · View at Scopus
  210. S. B. Pointing, “Feasibility of bioremediation by white-rot fungi,” Applied Microbiology and Biotechnology, vol. 57, no. 1-2, pp. 20–33, 2001. View at Publisher · View at Google Scholar · View at Scopus
  211. D. C. Bressler, P. M. Fedorak, and M. A. Pickard, “Oxidation of carbazole, N-ethylcarbazole, fluorene, and dibenzothiophene by the laccase of Coriolopsis gallica,” Biotechnology Letters, vol. 22, no. 14, pp. 1119–1125, 2000. View at Publisher · View at Google Scholar · View at Scopus
  212. J. Dec and J.-M. Bollag, “Phenoloxidase-mediated interactions of phenols and anilines with humic materials,” Journal of Environmental Quality, vol. 29, no. 3, pp. 665–676, 2000. View at Google Scholar · View at Scopus
  213. M.-L. Niku-Paavola and L. Viikari, “Enzymatic oxidation of alkenes,” Journal of Molecular Catalysis B, vol. 10, no. 4, pp. 435–444, 2000. View at Publisher · View at Google Scholar · View at Scopus
  214. J.-M. Bollag and C. Myers, “Detoxification of aquatic and terrestrial sites through binding of pollutants to humic substances,” Science of the Total Environment, vol. 117-118, pp. 357–366, 1992. View at Publisher · View at Google Scholar · View at Scopus
  215. M.-Y. Ahn, J. Dec, J.-E. Kim, and J.-M. Bollag, “Treatment of 2,4-dichlorophenol polluted soil with free and immobilized laccase,” Journal of Environmental Quality, vol. 31, no. 5, pp. 1509–1515, 2002. View at Google Scholar · View at Scopus
  216. M. Gelo-Pujic, H.-H. Kim, N. G. Butlin, and G. T. R. Palmore, “Electrochemical studies of a truncated laccase produced in Pichia pastoris,” Applied and Environmental Microbiology, vol. 65, no. 12, pp. 5515–5521, 1999. View at Google Scholar · View at Scopus
  217. J. Riu, I. Schonsee, and D. Barcelo, “Determination of sulfonated azo dyes in groundwater and industrial effluents by automated solid-phase extraction followed by capillary electrophorosis/mass spectrometry,” Journal of Mass Spectrometry, vol. 33, pp. 653–663, 1998. View at Google Scholar
  218. I. M. Banat, P. Nigam, D. Singh, and R. Marchant, “Microbial decolorization of textile-dye-containing effluents: a review,” Bioresource Technology, vol. 58, pp. 217–227, 1996. View at Google Scholar
  219. H. Zollinger, Synthesis, Properties and Applications of Organic Dyes and Pigments, Colour chemistry, John Wiley-VCH Publishers, New York, NY, USA, 2002.
  220. V. J. P. Poots, G. McKay, and J. J. Healy, “The removal of acid dye from effluent using natural adsorbents. I. Peat,” Water Research, vol. 10, no. 12, pp. 1061–1066, 1976. View at Publisher · View at Google Scholar · View at Scopus
  221. G. McKay, “Waste color removal from textile effluents,” American Dyestuff Reporter, vol. 68, no. 4, pp. 29–34, 1979. View at Google Scholar · View at Scopus
  222. H. Hou, J. Zhou, J. Wang, C. Du, and B. Yan, “Enhancement of laccase production by Pleurotus ostreatus and its use for the decolorization of anthraquinone dye,” Process Biochemistry, vol. 39, no. 11, pp. 1415–1419, 2004. View at Publisher · View at Google Scholar · View at Scopus
  223. S. Rodríguez Couto, M. Sanromán, and G. M. Gübitz, “Influence of redox mediators and metal ions on synthetic acid dye decolourization by crude laccase from Trametes hirsuta,” Chemosphere, vol. 58, no. 4, pp. 417–422, 2005. View at Publisher · View at Google Scholar · View at Scopus
  224. L. Setti, S. Giuliani, G. Spinozzi, and P. G. Pifferi, “Laccase catalyzed-oxidative coupling of 3-methyl 2-benzothiazolinone hydrazone and methoxyphenols,” Enzyme and Microbial Technology, vol. 25, no. 3-5, pp. 285–289, 1999. View at Publisher · View at Google Scholar · View at Scopus
  225. C. Raghukumar, “Fungi from marine habitats: an application in bioremediation,” Mycological Research, vol. 104, no. 10, pp. 1222–1226, 2000. View at Publisher · View at Google Scholar · View at Scopus
  226. G. M. B. Soares, M. Costa-Ferreira, and M. T. Pessoa de Amorim, “Decolorization of an anthraquinone-type dye using a laccase formulation,” Bioresource Technology, vol. 79, no. 2, pp. 171–177, 2001. View at Publisher · View at Google Scholar · View at Scopus
  227. G. M. B. Soares, M. T. P. De Amorim, and M. Costa-Ferreira, “Use of laccase together with redox mediators to decolourize Remazol Brilliant Blue R,” Journal of Biotechnology, vol. 89, no. 2-3, pp. 123–129, 2001. View at Publisher · View at Google Scholar · View at Scopus
  228. E. Abadulla, K.-H. Robra, G. M. Gübitz, L. M. Silva, and A. Cavaco-Paulo, “Enzymatic decolorization of textile dyeing effluents,” Textile Research Journal, vol. 70, no. 5, pp. 409–414, 2000. View at Google Scholar · View at Scopus
  229. E. Rodríguez, M. A. Pickard, and R. Vazquez-Duhalt, “Industrial dye decolorization by laccases from ligninolytic fungi,” Current Microbiology, vol. 38, no. 1, pp. 27–32, 1999. View at Publisher · View at Google Scholar · View at Scopus
  230. R. G. Saratale, G. D. Saratale, D. C. Kalyani, J. S. Chang, and S. P. Govindwar, “Enhanced decolorization and biodegradation of textile azo dye Scarlet R by using developed microbial consortium-GR,” Bioresource Technology, vol. 100, no. 9, pp. 2493–2500, 2009. View at Publisher · View at Google Scholar · View at Scopus
  231. N. Enayatizamir, F. Tabandeh, S. Rodríguez-Couto, B. Yakhchali, H. A. Alikhani, and L. Mohammadi, “Biodegradation pathway and detoxification of the diazo dye Reactive Black 5 by Phanerochaete chrysosporium,” Bioresource Technology, vol. 102, no. 22, pp. 10359–10362, 2011. View at Publisher · View at Google Scholar · View at Scopus
  232. R. C. Miranda, E. B. Gomes, N. J. Pereira, M. A. Marin-Morales, K. M. Machado, and N. B. Gusmao, “Biotreatment of textile effluent in static bioreactor by Curvularia lunata URM 6179 and Phanerochaete chrysosporium URM 6181,” Bioresource Technology, vol. 142, pp. 361–367, 2013. View at Google Scholar
  233. A. D'Annibale, S. R. Stazi, V. Vinciguerra, and G. G. Sermanni, “Oxirane-immobilized Lentinula edodes laccase: stability and phenolics removal efficiency in olive mill wastewater,” Journal of Biotechnology, vol. 77, no. 2-3, pp. 265–273, 2000. View at Publisher · View at Google Scholar · View at Scopus
  234. G.-G. Ying, B. Williams, and R. Kookana, “Environmental fate of alkylphenols and alkylphenol ethoxylates—a review,” Environment International, vol. 28, no. 3, pp. 215–226, 2002. View at Publisher · View at Google Scholar · View at Scopus
  235. O. P. Heemken, H. Reincke, B. Stachel, and N. Theobald, “The occurrence of xenoestrogens in the Elbe river and the North Sea,” Chemosphere, vol. 45, no. 3, pp. 245–259, 2001. View at Publisher · View at Google Scholar · View at Scopus
  236. J. I. Lyons, S. Y. Newell, A. Buchan, and M. A. Moran, “Diversity of ascomycete laccase gene sequences in a southeastern US salt marsh,” Microbial Ecology, vol. 45, no. 3, pp. 270–281, 2003. View at Publisher · View at Google Scholar · View at Scopus
  237. H. Bermek, K. Li, and K.-E. L. Eriksson, “Studies on mediators of manganese peroxidase for bleaching of wood pulps,” Bioresource Technology, vol. 85, no. 3, pp. 249–252, 2002. View at Publisher · View at Google Scholar · View at Scopus
  238. A. M. Calvo, J. L. Copa-Patiño, O. Alonso, and A. E. González, “Studies of the production and characterization of laccase activity in the basidiomycete Coriolopsis gallica, an efficient decolorizer of alkaline effluents,” Archives of Microbiology, vol. 171, no. 1, pp. 31–36, 1998. View at Publisher · View at Google Scholar · View at Scopus
  239. A. Taşpinar and N. Kolankaya, “Optimization of enzymatic chlorine removal from Kraft pulp,” Bulletin of Environmental Contamination and Toxicology, vol. 61, no. 1, pp. 15–21, 1998. View at Publisher · View at Google Scholar · View at Scopus
  240. O. Milstein, A. Haars, A. Majcherczyk et al., “Removal of chlorophenols and chlorolignins from bleaching effluent by combined chemical and biological treatment,” Water Science and Technology, vol. 20, no. 1, pp. 161–170, 1988. View at Google Scholar · View at Scopus
  241. P. Bajpai, “Application of enzymes in the pulp and paper industry,” Biotechnology Progress, vol. 15, no. 2, pp. 147–157, 1999. View at Publisher · View at Google Scholar · View at Scopus
  242. K. K. Y. Wong, J. D. Richardson, and S. D. Mansfield, “Enzymatic treatment of mechanical pulp fibers for improving papermaking properties,” Biotechnology Progress, vol. 16, no. 6, pp. 1025–1029, 2000. View at Publisher · View at Google Scholar · View at Scopus
  243. E. Abadulla, T. Tzanov, S. Costa, K.-H. Robra, A. Cavaco-Paulo, and G. M. Gubitz, “Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta,” Applied and Environmental Microbiology, vol. 66, no. 8, pp. 3357–3362, 2000. View at Publisher · View at Google Scholar · View at Scopus
  244. B. A. Kuznetsov, G. P. Shumakovich, O. V. Koroleva, and A. I. Yaropolov, “On applicability of laccase as label in the mediated and mediatorless electroimmunoassay: effect of distance on the direct electron transfer between laccase and electrode,” Biosensors and Bioelectronics, vol. 16, no. 1-2, pp. 73–84, 2001. View at Publisher · View at Google Scholar · View at Scopus
  245. A. L. Ghindilis, V. P. Gavrilova, and A. I. Yaropolov, “Laccase-based biosensor for determination of polyphenols: determination of catechols in tea,” Biosensors and Bioelectronics, vol. 7, no. 2, pp. 127–131, 1992. View at Publisher · View at Google Scholar · View at Scopus
  246. R. Fogel and J. C. Limson, “Electrochemically predicting phenolic substrates suitability for detection by amperometric laccase biosensors,” Electroanalysis, vol. 25, pp. 1237–1246, 2013. View at Google Scholar
  247. G. T. R. Palmore and H.-H. Kim, “Electro-enzymatic reduction of dioxygen to water in the cathode compartment of a biofuel cell,” Journal of Electroanalytical Chemistry, vol. 464, no. 1, pp. 110–117, 1999. View at Publisher · View at Google Scholar · View at Scopus
  248. G. Giovanelli and G. Ravasini, “Apple juice stabilization by combined enzyme-membrane filtration process,” LWT-Food Science and Technology, vol. 26, no. 1, pp. 1–7, 1993. View at Publisher · View at Google Scholar · View at Scopus
  249. W. A. Edens, T. Q. Goins, D. Dooley, and J. M. Henson, “Purification and characterization of a secreted laccase of Gaeumannomyces graminis var. tritici,” Applied and Environmental Microbiology, vol. 65, no. 7, pp. 3071–3074, 1999. View at Google Scholar · View at Scopus
  250. D. Slomczynski, J. P. Nakas, and S. W. Tanenbaum, “Production and characterization of laccase from Botrytis cinerea 61–34,” Applied and Environmental Microbiology, vol. 61, no. 3, pp. 907–912, 1995. View at Google Scholar · View at Scopus
  251. A. A. Ahmad, R. Othman, F. Yusof, and M. F. A. Wahab, “Zinc-laccase biofuel cell,” IIUM Engineering Journal, vol. 12, pp. 153–160, 2011. View at Google Scholar
  252. B. Viswanth, Laccase from Stereum Ostrea: Production, Purification of Laccase from Stereum Ostrea, LAP LAMBERT Academic Publishing, Saarbrücken, Germany, 2010.