Table of Contents Author Guidelines Submit a Manuscript
Enzyme Research
Volume 2014 (2014), Article ID 517164, 13 pages
http://dx.doi.org/10.1155/2014/517164
Review Article

Mode of Action of Lactoperoxidase as Related to Its Antimicrobial Activity: A Review

1Plant Pathology Laboratory, Liége University, Gembloux Agro-Bio Tech, Passage des Déportés 2, 5030 Gembloux, Belgium
2Taradon Laboratory, Avenue Léon Champagne 2, 1480 Tubize, Belgium

Received 17 June 2014; Revised 19 August 2014; Accepted 19 August 2014; Published 16 September 2014

Academic Editor: Qi-Zhuang Ye

Copyright © 2014 F. Bafort et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. J. O'Brien, “Peroxidases,” Chemico-Biological Interactions, vol. 129, no. 1-2, pp. 113–139, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. W. Jantschko, P. G. Furtmüller, M. Allegra et al., “Redox intermediates of plant and mammalian peroxidases: a comparative transient-kinetic study of their reactivity toward indole derivatives,” Archives of Biochemistry and Biophysics, vol. 398, no. 1, pp. 12–22, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Kimura and M. Ikeda-Saito, “Human myeloperoxidase and thyroid peroxidase, two enzymes with separate and distinct physiological functions, are evolutionarily related members of the same gene family,” Proteins: Structure, Function and Genetics, vol. 3, no. 2, pp. 113–120, 1988. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Battistuzzi, M. Bellei, C. A. Bortolotti, and M. Sola, “Redox properties of heme peroxidases,” Archives of Biochemistry and Biophysics, vol. 500, no. 1, pp. 21–36, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Zamocky, C. Jakopitsch, P. G. Furtmüller, C. Dunand, and C. Obinger, “The peroxidase-cyclooxygenase superfamily: reconstructed evolution of critical enzymes of the innate immune system,” Proteins: Structure, Function and Genetics, vol. 72, no. 2, pp. 589–605, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Daiyasu and H. Toh, “Molecular evolution of the myeloperoxidase family,” Journal of Molecular Evolution, vol. 51, no. 5, pp. 433–445, 2000. View at Google Scholar · View at Scopus
  7. D. Serteyn, S. Grulke, T. Franck, A. Mouithys-Mickalad, and G. Deby-Dupont, “Neutrophile myeloperoxidase, protective enzyme with strong oxidative activities,” Annales de Medecine Veterinaire, vol. 147, no. 2, pp. 79–93, 2003. View at Google Scholar · View at Scopus
  8. S. C. Whitman, S. L. Hazen, D. B. Miller, R. A. Hegele, J. W. Heinecke, and M. W. Huff, “Modification of type III VLDL, their remnants, and VLDL from apoE- knockout mice by p-hydroxyphenylacetaldehyde, a product of myeloperoxidase activity, causes marked cholesteryl ester accumulation in macrophages,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 19, no. 5, pp. 1238–1249, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. T. J. Barrett and C. L. Hawkins, “Hypothiocyanous acid: benign or deadly?” Chemical Research in Toxicology, vol. 25, no. 2, pp. 263–273, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. M. M. Lloyd, D. M. van Reyk, M. J. Davies, and C. L. Hawkins, “Hypothiocyanous acid is a more potent inducer of apoptosis and protein thiol depletion in murine macrophage cells than hypochlorous acid or hypobromous acid,” Biochemical Journal, vol. 414, no. 2, pp. 271–280, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Wang and A. Slungaard, “Role of eosinophil peroxidase in host defense and disease pathology,” Archives of Biochemistry and Biophysics, vol. 445, no. 2, pp. 256–260, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Ahariz and P. Courtois, “Candida albicans susceptibility to lactoperoxidase-generated hypoiodite,” Clinical, Cosmetic and Investigational Dentistry, vol. 2, pp. 69–78, 2010. View at Google Scholar · View at Scopus
  13. A. Welk, C. Meller, R. Schubert, C. Schwahn, A. Kramer, and H. Below, “Effect of lactoperoxidase on the antimicrobial effectiveness of the thiocyanate hydrogen peroxide combination in a quantitative suspension test,” BMC Microbiology, vol. 9, article 134, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. K. M. Pruitt and J. O. Tenovuo, Eds., The Lactoperoxidase System: Chemistry and Biological Significance, vol. 27 of Immunology Series, Marcel Dekker, New York, NY, USA, 1985.
  15. P. G. Furtmüller, W. Jantschko, G. Regelsberger, C. Jakopitsch, J. Arnhold, and C. Obinger, “Reaction of lactoperoxidase compound I with halides and thiocyanate,” Biochemistry, vol. 41, no. 39, pp. 11895–11900, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. P. G. Furtmuller, U. Burner, and C. Obinger, “Reaction of myeloperoxidase compound I with chloride, bromide, iodide, and thiocyanate,” Biochemistry, vol. 37, no. 51, pp. 17923–17930, 1998. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Arnhold, E. Monzani, P. G. Furtmüller, M. Zederbauer, L. Casella, and C. Obinger, “Kinetics and thermodynamics of halide and nitrite oxidation by mammalian heme peroxidases,” European Journal of Inorganic Chemistry, no. 19, pp. 3801–3811, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. M. J. Davies, C. L. Hawkins, D. I. Pattison, and M. D. Rees, “Mammalian heme peroxidases: from molecular mechanisms to health implications,” Antioxidants and Redox Signaling, vol. 10, no. 7, pp. 1199–1234, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. J. N. de Wit and A. C. M. van Hooydonk, “Structure, functions and applications of lactoperoxidase in natural antimicrobial systems,” Nederlands melk en Zuiveltijdschrift, vol. 50, no. 2, pp. 227–244, 1996. View at Google Scholar
  20. P. G. Furtmüller, M. Zederbauer, W. Jantschko et al., “Active site structure and catalytic mechanisms of human peroxidases,” Archives of Biochemistry and Biophysics, vol. 445, no. 2, pp. 199–213, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Zederbauer, P. G. Furtmüller, S. Brogioni, C. Jakopitsch, G. Smulevich, and C. Obinger, “Heme to protein linkages in mammalian peroxidases: impact on spectroscopic, redox and catalytic properties,” Natural Product Reports, vol. 24, no. 3, pp. 571–584, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Battistuzzi, M. Bellei, J. Vlasits et al., “Redox thermodynamics of lactoperoxidase and eosinophil peroxidase,” Archives of Biochemistry and Biophysics, vol. 494, no. 1, pp. 72–77, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. I. A. Sheikh, A. Singh, N. Singh et al., “Structural evidence of substrate specificity in mammalian peroxidases: structure of the thiocyanate complex with lactoperoxidase and its interactions at 2.4 å 2.4 Å resolution,” The Journal of Biological Chemistry, vol. 284, no. 22, pp. 14849–14856, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Kohler and H. Jenzer, “Interaction of lactoperoxidase with hydrogen peroxide. Formation of enzyme intermediates and generation of free radicals,” Free Radical Biology and Medicine, vol. 6, no. 3, pp. 323–339, 1989. View at Google Scholar · View at Scopus
  25. P. G. Furtmüller, U. Burner, W. Jantschko, G. Regelsberger, and C. Obinger, “Two-electron reduction and one-electron oxidation of organic hydroperoxides by human myeloperoxidase,” FEBS Letters, vol. 484, no. 2, pp. 139–143, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Taurog, M. L. Dorris, and D. R. Doerge, “Mechanism of simultaneous iodination and coupling catalyzed by thyroid peroxidase,” Archives of Biochemistry and Biophysics, vol. 330, no. 1, pp. 24–32, 1996. View at Publisher · View at Google Scholar · View at Scopus
  27. J. E. Erman, L. B. Vitello, J. Matthew Mauro, and J. Kraut, “Detection of an oxyferryl porphyrin π-cation-radical intermediate in the reaction between hydrogen peroxide and a mutant yeast cytochrome c peroxidase. Evidence for tryptophan-191 involvement in the radical site of compound I,” Biochemistry, vol. 28, no. 20, pp. 7992–7995, 1989. View at Publisher · View at Google Scholar · View at Scopus
  28. M. T. Ashby, “Inorganic chemistry of defensive peroxidases in the human oral cavity,” Journal of Dental Research, vol. 87, no. 10, pp. 900–914, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. J. D. Chandler and B. J. Day, “Thiocyanate: a potentially useful therapeutic agent with host defense and antioxidant properties,” Biochemical Pharmacology, vol. 84, no. 11, pp. 1381–1387, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. E. C. Jong, W. R. Henderson, and S. J. Klebanoff, “Bactericidal activity of eosinophil peroxidase,” Journal of Immunology, vol. 124, no. 3, pp. 1378–1382, 1980. View at Google Scholar · View at Scopus
  31. E. C. Jong, A. A. F. Mahmoud, and S. J. Kelbanoff, “Peroxidase-mediated toxicity to schistosomula of Schistosoma mansoni,” Journal of Immunology, vol. 126, no. 2, pp. 468–471, 1981. View at Google Scholar · View at Scopus
  32. L. M. Wolfson and S. S. Sumner, “Antibacterial activity of the lactoperoxidase system: a review,” Journal of Food Protection, vol. 56, no. 10, pp. 887–892, 1993. View at Google Scholar · View at Scopus
  33. J. Arnhold, P. G. Furtmüller, G. Regelsberger, and C. Obinger, “Redox properties of the couple compound I/native enzyme of myeloperoxidase and eosinophil peroxidase,” European Journal of Biochemistry, vol. 268, no. 19, pp. 5142–5148, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. P. G. Furtmüller, J. Arnhold, W. Jantschko, M. Zederbauer, C. Jakopitsch, and C. Obinger, “Standard reduction potentials of all couples of the peroxidase cycle of lactoperoxidase,” Journal of Inorganic Biochemistry, vol. 99, no. 5, pp. 1220–1229, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. C. J. van Dalen, M. W. Whitehouse, C. C. Winterbourn, and A. J. Kettle, “Thiocyanate and chloride as competing substrates for myeloperoxidase,” Biochemical Journal, vol. 327, no. 2, pp. 487–492, 1997. View at Google Scholar · View at Scopus
  36. A. Slungaard and J. R. Mahoney Jr., “Thiocyanate is the major substrate for eosinophil peroxidase in physiologic fluids: implications for cytotoxicity,” The Journal of Biological Chemistry, vol. 266, no. 8, pp. 4903–4910, 1991. View at Google Scholar · View at Scopus
  37. J. Tenovuo, “Antimicrobial function of human saliva—how important is it for oral health?” Acta Odontologica Scandinavica, vol. 56, no. 5, pp. 250–256, 1998. View at Publisher · View at Google Scholar · View at Scopus
  38. R. Ihalin, V. Loimaranta, and J. Tenovuo, “Origin, structure, and biological activities of peroxidases in human saliva,” Archives of Biochemistry and Biophysics, vol. 445, no. 2, pp. 261–268, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. J. A. Rooke, J. F. Flockhart, and N. H. Sparks, “The potential for increasing the concentrations of micro-nutrients relevant to human nutrition in meat, milk and eggs,” Journal of Agricultural Science, vol. 148, no. 5, pp. 603–614, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. H. Kohler, A. Taurog, and H. B. Dunford, “Spectral studies with lactoperoxidase and thyroid peroxidase: interconversions between native enzyme, compound II, and compound III,” Archives of Biochemistry and Biophysics, vol. 264, no. 2, pp. 438–449, 1988. View at Publisher · View at Google Scholar · View at Scopus
  41. I. Yamazaki, H. S. Mason, and L. Piette, “Identification, by electron paramagnetic resonance spectroscopy, of free radicals generated from substrates by peroxidase,” The Journal of Biological Chemistry, vol. 235, pp. 2444–2449, 1960. View at Google Scholar · View at Scopus
  42. B. Chance, “The kinetics and stoichiometry of the transition from the primary to the secondary peroxidase peroxide complexes,” Archives of Biochemistry and Biophysics, vol. 41, no. 2, pp. 416–424, 1952. View at Publisher · View at Google Scholar · View at Scopus
  43. K. M. Pruitt, B. Mansson-Rahemtulla, D. C. Baldone, and F. Rahemtulla, “Steady-state kinetics of thiocyanate oxidation catalyzed by human salivary peroxidase,” Biochemistry, vol. 27, no. 1, pp. 240–245, 1988. View at Publisher · View at Google Scholar · View at Scopus
  44. B. G. J. M. Bolscher and R. Wever, “A kinetic study of the reaction between human myeloperoxidase, hydroperoxides and cyanide: inhibition by chloride and thiocyanate,” Biochimica et Biophysica Acta: Protein Structure and Molecular Enzymology, vol. 788, no. 1, pp. 1–10, 1984. View at Publisher · View at Google Scholar · View at Scopus
  45. L. A. Marquez, J. T. Huang, and H. Brian Dunford, “Spectral and kinetic studies on the formation of myeloperoxidase compounds I and II: roles of hydrogen peroxide and superoxide,” Biochemistry, vol. 33, no. 6, pp. 1447–1454, 1994. View at Publisher · View at Google Scholar · View at Scopus
  46. H. M. Abu-Soud and S. L. Hazen, “Nitric oxide is a physiological substrate for mammalian peroxidases,” The Journal of Biological Chemistry, vol. 275, no. 48, pp. 37524–37532, 2000. View at Publisher · View at Google Scholar · View at Scopus
  47. Y. R. Tahboub, S. Galijasevic, M. P. Diamond, and H. M. Abu-Soud, “Thiocyanate modulates the catalytic activity of mammalian peroxidases,” Journal of Biological Chemistry, vol. 280, no. 28, pp. 26129–26136, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. H. Jenzer, W. Jones, and H. Kohler, “On the molecular mechanism of lactoperoxidase-catalyzed H2O2 metabolism and irreversible enzyme inactivation,” The Journal of Biological Chemistry, vol. 261, no. 33, pp. 15550–15556, 1986. View at Google Scholar · View at Scopus
  49. R. P. Magnusson, A. Taurog, and M. L. Dorris, “Mechanism of iodide-dependent catalatic activity of thyroid peroxidase and lactoperoxidase,” The Journal of Biological Chemistry, vol. 259, no. 1, pp. 197–205, 1984. View at Google Scholar · View at Scopus
  50. D. K. Bhattacharyya, U. Bandyopadhyay, and R. K. Banerjee, “EDTA inhibits lactoperoxidase-catalyzed iodide oxidation by acting as an electron-donor and interacting near the iodide binding site,” Molecular and Cellular Biochemistry, vol. 162, no. 2, pp. 105–111, 1996. View at Google Scholar · View at Scopus
  51. C. L. Hawkins, “The role of hypothiocyanous acid (HOSCN) in biological systems HOSCN in biological systems,” Free Radical Research, vol. 43, no. 12, pp. 1147–1158, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. S. J. Klebanoff, “Iodination of bacteria: a bactericidal mechanism.,” Journal of Experimental Medicine, vol. 126, no. 6, pp. 1063–1078, 1967. View at Publisher · View at Google Scholar · View at Scopus
  53. S. J. Klebanoff, “Myeloperoxidase-halide-hydrogen peroxide antibacterial system.,” Journal of Bacteriology, vol. 95, no. 6, pp. 2131–2138, 1968. View at Google Scholar · View at Scopus
  54. R. K. Banerjee and A. G. Datta, “Salivary peroxidases,” Molecular and Cellular Biochemistry, vol. 70, no. 1, pp. 21–29, 1986. View at Google Scholar · View at Scopus
  55. M. Huwiler, H. Jenzer, and H. Kohler, “The role of compound III in reversible and irreversible inactivation of lactoperoxidase,” European Journal of Biochemistry, vol. 158, no. 3, pp. 609–614, 1986. View at Publisher · View at Google Scholar · View at Scopus
  56. R. Wever, W. M. Kast, J. H. Kasinoedin, and R. Boelens, “The peroxidation of thiocyanate catalysed by myeloperoxidase and lactoperoxidase,” Biochimica et Biophysica Acta (BBA)/Protein Structure and Molecular, vol. 709, no. 2, pp. 212–219, 1982. View at Publisher · View at Google Scholar · View at Scopus
  57. C. E. A. Souza, D. Maitra, G. M. Saed et al., “Hypochlorous acid-induced heme degradation from lactoperoxidase as a novel mechanism of free iron release and tissue injury in inflammatory diseases,” PLoS ONE, vol. 6, no. 11, Article ID e27641, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. J. Carlsson, “Bactericidal effect of hydrogen peroxide is prevented by the lactoperoxidase-thiocyanate system under anaerobic conditions,” Infection and Immunity, vol. 29, no. 3, pp. 1190–1192, 1980. View at Google Scholar · View at Scopus
  59. E. L. Thomas and T. M. Aune, “Lactoperoxidase, peroxide, thiocyanate antimicrobial system: correlation of sulfhydryl oxidation with antimicrobial action,” Infection and Immunity, vol. 20, no. 2, pp. 456–463, 1978. View at Google Scholar · View at Scopus
  60. J. Carlsson, Y. Iwami, and T. Yamada, “Hydrogen peroxide excretion by oral streptococci and effect of lactoperoxidase-thiocyanate-hydrogen peroxide,” Infection and Immunity, vol. 40, no. 1, pp. 70–80, 1983. View at Google Scholar · View at Scopus
  61. K. D. Kussendrager and A. C. M. van Hooijdonk, “Lactoperoxidase: physico-chemical properties, occurrence, mechanism of action and applications,” The British Journal of Nutrition, vol. 84, supplement 1, pp. S19–S25, 2000. View at Google Scholar · View at Scopus
  62. J. P. Perraudin, “Protéines à activités biologiques: lactoferrine et lactoperoxydase. Connaissances récemment acquises et technologies d'obtention,” Lait, vol. 71, no. 2, pp. 191–211, 1991. View at Publisher · View at Google Scholar
  63. J.-W. Boots and R. Floris, “Lactoperoxidase: From catalytic mechanism to practical applications,” International Dairy Journal, vol. 16, no. 11, pp. 1272–1276, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. A. C. M. van Hooijdonk, K. D. Kussendrager, and J. M. Steijns, “In vivo antimicrobial and antiviral activity of components in bovine milk and colostrum involved in non-specific defence,” British Journal of Nutrition, vol. 84, supplement 1, pp. S127–S134, 2000. View at Google Scholar · View at Scopus
  65. D. M. Hogg and G. R. Jago, “The antibacterial action of lactoperoxidase. The nature of the bacterial inhibitor,” Biochemical Journal, vol. 117, no. 4, pp. 779–790, 1970. View at Google Scholar · View at Scopus
  66. M. T. Ashby, “Hypothiocyanite,” in Advances in Inorganic Chemistry, R. van Eldik and I.-B. Ivana, Eds., chapter 8, pp. 263–303, Academic Press, New York, NY, USA, 2012. View at Google Scholar
  67. E. L. Thomas, “Lactoperoxidase-catalyzed oxidation of thiocyanate: equilibria between oxidized forms of thiocyanate,” Biochemistry, vol. 20, no. 11, pp. 3273–3280, 1981. View at Publisher · View at Google Scholar · View at Scopus
  68. T. M. Aune and E. L. Thomas, “Oxidation of protein sulfhydryls by products of peroxidase-catalyzed oxidation of thiocyanate ion,” Biochemistry, vol. 17, no. 6, pp. 1005–1010, 1978. View at Publisher · View at Google Scholar · View at Scopus
  69. T. M. Aune and E. L. Thomas, “Accumulation of hypothiocyanite ion during peroxidase-catalyzed oxidation of thiocyanate ion,” European Journal of Biochemistry, vol. 80, no. 1, pp. 209–214, 1977. View at Publisher · View at Google Scholar · View at Scopus
  70. J. D. Oram and B. Reiter, “The inhibition of streptococci by lactoperoxidase, thiocyanate and hydrogen peroxide. The effect of the inhibitory system on susceptible and resistant strains of group N streptococci,” Biochemical Journal, vol. 100, no. 2, pp. 373–381, 1966. View at Google Scholar · View at Scopus
  71. J. Kalmár, K. L. Woldegiorgis, B. Biri, and M. T. Ashby, “Mechanism of decomposition of the human defense factor hypothiocyanite near physiological pH,” Journal of the American Chemical Society, vol. 133, no. 49, pp. 19911–19921, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. H. Hoogendoorn, J. P. Piessens, W. Scholtes, and L. A. Stoddard, “Hypothiocyanite ion; the inhibitor formed by the system lactoperoxidase thiocyanate hydrogen peroxide. I. Identification of the inhibiting compound,” Caries Research, vol. 11, no. 2, pp. 77–84, 1977. View at Publisher · View at Google Scholar · View at Scopus
  73. L. Bjorck and O. Claesson, “Correlation between concentration of hypothiocyanate and antibacterial effect of the lactoperoxidase system against Escherichia coli,” Journal of Dairy Science, vol. 63, no. 6, pp. 919–922, 1980. View at Google Scholar
  74. P. Nagy, S. S. Alguindigue, and M. T. Ashby, “Lactoperoxidase-catalyzed oxidation of thiocyanate by hydrogen peroxide: a reinvestigation of hypothiocyanite by nuclear magnetic resonance and optical spectroscopy,” Biochemistry, vol. 45, no. 41, pp. 12610–12616, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. Y. Adolphe, M. Jacquot, M. Linder, A.-M. Revol-Junelles, and J.-B. Millière, “Optimization of the components concentrations of the lactoperoxidase system by RSM,” Journal of Applied Microbiology, vol. 100, no. 5, pp. 1034–1042, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. M. Adamson and K. M. Pruitt, “Lactoperoxidase-catalyzed inactivation of hexokinase,” Biochimica et Biophysica Acta, vol. 658, no. 2, pp. 238–247, 1981. View at Google Scholar · View at Scopus
  77. M. N. Mickelson, “Glucose transport in Streptococcus agalactiae and its inhibition by lactoperoxidase-thiocyanate-hydrogen peroxide,” Journal of Bacteriology, vol. 132, no. 2, pp. 541–548, 1977. View at Google Scholar · View at Scopus
  78. E. L. Thomas, K. A. Pera, K. W. Smith, and A. K. Chwang, “Inhibition of Streptococcus mutans by the lactoperoxidase antimicrobial system,” Infection and Immunity, vol. 39, no. 2, pp. 767–778, 1983. View at Google Scholar · View at Scopus
  79. J. Sermon, K. Vanoirbeek, P. De Spiegeleer, R. Van Houdt, A. Aertsen, and C. W. Michiels, “Unique stress response to the lactoperoxidase-thiocyanate enzyme system in Escherichia coli,” Research in Microbiology, vol. 156, no. 2, pp. 225–232, 2005. View at Publisher · View at Google Scholar · View at Scopus
  80. E. L. Thomas and T. M. Aune, “Susceptibility of Escherichia coli to bactericidal action of lactoperoxidase, peroxide, and iodide or thiocyanate,” Antimicrobial Agents and Chemotherapy, vol. 13, no. 2, pp. 261–265, 1978. View at Publisher · View at Google Scholar · View at Scopus
  81. K. M. Pruitt, J. Tenovuo, R. W. Andrews, and T. McKane, “Lactoperoxidase-catalyzed oxidation of thiocyanate: polarographic study of the oxidation products,” Biochemistry, vol. 21, no. 3, pp. 562–567, 1982. View at Publisher · View at Google Scholar · View at Scopus
  82. M. Huwiler and H. Kohler, “Pseudo-catalytic degradation of hydrogen peroxide in the lactoperoxidase/H2O2/iodide system,” European Journal of Biochemistry, vol. 141, no. 1, pp. 69–74, 1984. View at Publisher · View at Google Scholar · View at Scopus
  83. M. Huwiler, U. Burgi, and H. Kohler, “Mechanism of enzymatic and non-enzymatic tyrosine iodination. Inhibition by excess hydrogen peroxide and/or iodide,” European Journal of Biochemistry, vol. 147, no. 3, pp. 469–476, 1985. View at Google Scholar · View at Scopus
  84. M. Morrison, G. S. Bayse, and A. W. Michaels, “Determination of spectral properties of aqueous I2 and I3- and the equilibrium constant,” Analytical Biochemistry, vol. 42, no. 1, pp. 195–201, 1971. View at Publisher · View at Google Scholar · View at Scopus
  85. E. L. Thomas and T. M. Aune, “Peroxidase catalyzed oxidation of protein sulfhydryls mediated by iodine,” Biochemistry, vol. 16, no. 16, pp. 3581–3586, 1977. View at Publisher · View at Google Scholar · View at Scopus
  86. W. Gottardi, “Iodine and disinfection: theoretical study on mode of action, efficiency, stability, and analytical aspects in the aqueous system,” Archiv der Pharmazie, vol. 332, no. 5, pp. 151–157, 1999. View at Google Scholar
  87. W. A. Prütz, R. Kissner, W. H. Koppenol, and H. Rüegger, “On the irreversible destruction of reduced nicotinamide nucleotides by hypohalous acids,” Archives of Biochemistry and Biophysics, vol. 380, no. 1, pp. 181–191, 2000. View at Publisher · View at Google Scholar · View at Scopus
  88. Y. Bichsel and U. Von Gunten, “Hypoiodous acid: kinetics of the buffer-catalyzed disproportionation,” Water Research, vol. 34, no. 12, pp. 3197–3203, 2000. View at Publisher · View at Google Scholar · View at Scopus
  89. Y. Bichsel and U. von Gunten, “Oxidation of iodide and hypoiodous acid in the disinfection of natural waters,” Environmental Science and Technology, vol. 33, no. 22, pp. 4040–4045, 1999. View at Publisher · View at Google Scholar · View at Scopus
  90. W. A. Prütz, R. Kissner, T. Nauser, and W. H. Koppenol, “On the oxidation of cytochrome c by hypohalous acids,” Archives of Biochemistry and Biophysics, vol. 389, no. 1, pp. 110–122, 2001. View at Publisher · View at Google Scholar · View at Scopus
  91. A. Virion, J. L. Michot, D. Deme, and J. Pommier, “NADPH oxidation catalyzed by the peroxidase/H2O2 system. Iodide-mediated oxidation of NADPH to iodinated NADP,” European Journal of Biochemistry, vol. 148, no. 2, pp. 239–243, 1985. View at Publisher · View at Google Scholar · View at Scopus
  92. E. L. Thomas and T. M. Aune, “Cofactor role of iodide in peroxidase antimicrobial action against Escherichia coli,” Antimicrobial Agents and Chemotherapy, vol. 13, no. 6, pp. 1000–1005, 1978. View at Publisher · View at Google Scholar · View at Scopus
  93. E. L. Thomas and T. M. Aune, “Oxidation of Escherichia coli sulfhydryl components by the peroxidase-hydrogen peroxide-iodide antimicrobial system,” Antimicrobial Agents and Chemotherapy, vol. 13, no. 6, pp. 1006–1010, 1978. View at Publisher · View at Google Scholar · View at Scopus
  94. C. B. Hamon and S. J. Klebanoff, “A peroxidase-mediated, streptococcus mitis-dependent antimicrobial system in saliva,” Journal of Experimental Medicine, vol. 137, no. 2, pp. 438–450, 1973. View at Publisher · View at Google Scholar · View at Scopus
  95. R. Ihalin, J. Nuutila, V. Loimaranta, M. Lenander, J. Tenovuo, and E.-M. Lilius, “Susceptibility of Fusobacterium nucleatum to killing by peroxidase-iodide-hydrogen peroxide combination in buffer solution and in human whole saliva,” Anaerobe, vol. 9, no. 1, pp. 23–30, 2003. View at Publisher · View at Google Scholar · View at Scopus
  96. R. Ihalin, V. Loimaranta, M. Lenander-Lumikari, and J. Tenovuo, “The effects of different (pseudo)halide substrates on peroxidase-mediated killing of Actinobacillus actinomycetemcomitans,” Journal of Periodontal Research, vol. 33, no. 7, pp. 421–427, 1998. View at Google Scholar · View at Scopus
  97. E. H. Bosch, H. van doorne, and S. de Vries, “The lactoperoxidase system: the influence of iodide and the chemical and antimicrobial stability over the period of about 18 months,” Journal of Applied Microbiology, vol. 89, no. 2, pp. 215–224, 2000. View at Publisher · View at Google Scholar · View at Scopus