Table of Contents
Epidemiology Research International
Volume 2012 (2012), Article ID 856810, 10 pages
http://dx.doi.org/10.1155/2012/856810
Review Article

Evolving Trends in the Hepatitis C Virus Molecular Epidemiology Studies: From the Viral Sequences to the Human Genome

1Instituto de Ciencias Básicas y Medicina Experimental (ICBME), Hospital Italiano de Buenos Aires, C1181ACH Buenos Aires, Argentina
2Unidad de Hepatología, Hospital Italiano de Buenos Aires, C1181ACH Buenos Aires, Argentina

Received 30 November 2011; Accepted 16 January 2012

Academic Editor: K. Matsuo

Copyright © 2012 Julieta Trinks et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. S. Te and D. M. Jensen, “Epidemiology of hepatitis B and C viruses: a global overview,” Clinics in Liver Disease, vol. 14, no. 1, pp. 1–21, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. G. J. Dore, A. J. Freeman, M. Law, and J. M. Kaldor, “Is severe liver disease a common outcome for people with chronic hepatitis C?” Journal of Gastroenterology and Hepatology, vol. 17, no. 4, pp. 423–430, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Poynard, M. F. Yuen, V. Ratziu, and C. L. Lai, “Viral hepatitis C,” The Lancet, vol. 362, no. 9401, pp. 2095–2100, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. N. Muhlberger, R. Schwarzer, B. Lettmeier, G. Sroczynski, S. Zeuzem, and U. Siebert, “HCV-related burden of disease in Europe: a systematic assessment of incidence, prevalence, morbidity, and mortality,” BMC Public Health, vol. 9, article 34, 2009. View at Publisher · View at Google Scholar · View at PubMed
  5. Q. L. Choo, G. Kuo, A. J. Weiner, L. R. Overby, D. W. Bradley, and M. Houghton, “Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome,” Science, vol. 244, no. 4902, pp. 359–362, 1989. View at Google Scholar · View at Scopus
  6. D. Lavanchy, “Evolving epidemiology of hepatitis C virus,” Clinical Microbiology and Infection, vol. 17, no. 2, pp. 107–115, 2011. View at Publisher · View at Google Scholar · View at PubMed
  7. G. R. Picchio, P. C. Baré, V. I. Descalzi et al., “High prevalence of infection with a single hepatitis C virus genotype in a small rural community of Argentina,” Liver International, vol. 26, no. 6, pp. 660–665, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. M. D. Golemba, F. A. Di Lello, F. Bessone et al., “High prevalence of hepatitis C virus genotype 1b infection in a small town of Argentina. Phylogenetic and Bayesian coalescent analysis,” PLoS One, vol. 5, no. 1, Article ID e8751, 2010. View at Publisher · View at Google Scholar · View at PubMed
  9. J. Crebely, J. D. Raffa, C. Lai, M. Krajden, B. Conway, and M. W. Tyndall, “Factors associated with spontaneous clearance of hepatitis C virus among illicit drug users,” Canadian Journal of Gastroenterology, vol. 21, no. 7, pp. 447–451, 2007. View at Google Scholar · View at Scopus
  10. D. L. Thomas, J. Astemborski, R. M. Rai et al., “The natural history of hepatitis C virus infection: host, viral, and environmental factors,” Journal of the American Medical Association, vol. 284, no. 4, pp. 450–456, 2000. View at Google Scholar · View at Scopus
  11. K. B. Aborsangaya, I. Dembinski, S. Khatkar, M. P. Alphonse, P. Nickerson, and J. D. Rempel, “Impact of aboriginal ethnicity on HCV core-induced IL-10 synthesis: interaction with IL-10 gene polymorphisms,” Hepatology, vol. 45, no. 3, pp. 623–630, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. M. P. Busch, S. A. Glynn, S. L. Stramer et al., “Correlates of hepatitis C virus (HCV) RNA negativity among HCV-seropositive blood donors,” Transfusion, vol. 46, no. 3, pp. 469–475, 2006. View at Google Scholar
  13. M. G. Swain, M. I. Lai, M. L. Shiffman et al., “A sustained virologic response is durable in patients with chronic hepatitis C treated with peginterferon alfa-2a and ribavirin,” Gastroenterology, vol. 139, no. 5, pp. 1593–1601, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. E. Bjornsson, H. Verbaan, A. Oksanen et al., “Health-related quality of life in patients with different stages of liver disease induced by hepatitis C,” Scandinavian Journal of Gastroenterology, vol. 44, no. 7, pp. 878–887, 2009. View at Publisher · View at Google Scholar · View at PubMed
  15. NIH, “National institutes of health consensus development conference statement: management of hepatitis C 2002 (2002 Jun 10–12),” Gastroenterology, vol. 123, no. 6, pp. 2082–2099, 2002. View at Google Scholar
  16. M. Thursz, L. Yee, and S. Khakoo, “Understanding the host genetics of chronic hepatitis B and C,” Seminars in Liver Disease, vol. 31, no. 2, pp. 115–127, 2011. View at Google Scholar
  17. T. Suzuki, H. Aizaki, K. Murakami, I. Shoji, and T. Wakita, “Molecular biology of hepatitis C virus,” Journal of Gastroenterology, vol. 42, no. 6, pp. 411–423, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. N. Kato, M. Hijikata, Y. Ootsuyama et al., “Molecular-cloning of the human hepatitis-C virus genome from Japanese patients with non-A, non-B hepatitis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 24, pp. 9524–9528, 1990. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Kato, M. Hijikata, Y. Ootsuyama, M. Nakagawa, S. Ohkoshi, and K. Shimotohno, “Sequence diversity of hepatitis C viral genomes,” Molecular Biology and Medicine, vol. 7, no. 6, pp. 495–501, 1990. View at Google Scholar · View at Scopus
  20. Q. L. Choo, K. H. Richman, J. H. Han et al., “Genetic organization and diversity of the hepatitis C virus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 6, pp. 2451–2455, 1991. View at Google Scholar · View at Scopus
  21. P. Simmonds, E. C. Holmes, T. A. Cha et al., “Classification of hepatitis C virus into six major genotypes and a series of subtypes by phylogenetic analysis of the NS-5 region,” Journal of General Virology, vol. 74, no. 11, pp. 2391–2399, 1993. View at Google Scholar · View at Scopus
  22. D. Murphy, J. Chamberland, R. Dandavino, and E. Sablon, “A new genotype of hepatitis C virus originating from central Africa,” Hepatology, vol. 46, supplement 1, article 623a, 2007. View at Google Scholar
  23. P. Simmonds, J. Bukh, C. Combet et al., “Consensus proposals for a unified system of nomenclature of hepatitis C virus genotypes,” Hepatology, vol. 42, no. 4, pp. 962–973, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. P. Simmonds, “Clinical relevance of hepatitis C virus genotypes,” Gut, vol. 40, no. 3, pp. 291–293, 1997. View at Google Scholar · View at Scopus
  25. F. McOmish, P. L. Yap, B. C. Dow et al., “Geographical distribution of hepatitis C virus genotypes in blood donors: an international collaborative survey,” Journal of Clinical Microbiology, vol. 32, no. 4, pp. 884–892, 1994. View at Google Scholar · View at Scopus
  26. J. H. Kao, P. J. Chen, M. Y. Lai et al., “Genotypes of hepatitis C virus in Taiwan and the progression of liver disease,” Journal of Clinical Gastroenterology, vol. 21, no. 3, pp. 233–237, 1995. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Agha, Y. Tanaka, N. Saudy et al., “Reliability of hepatitis C virus core antigen assay for detection of viremia in HCV genotypes 1, 2, 3, and 4 infected blood donors: a collaborative study between Japan, Egypt, and Uzbekistan,” Journal of Medical Virology, vol. 73, no. 2, pp. 216–222, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. M. M. Hassan, L. Y. Hwang, C. J. Hatten et al., “Risk factors for hepatocellular carcinoma: synergism of alcohol with viral hepatitis and diabetes mellitus,” Hepatology, vol. 36, no. 5, pp. 1206–1213, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. G. Fattovich, T. Stroffolini, I. Zagni, and F. Donato, “Hepatocellular carcinoma in cirrhosis: incidence and risk factors,” Gastroenterology, vol. 127, supplement 1, no. 5, pp. S35–S50, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Kasahara, N. Hayashi, K. Mochizuki et al., “Risk factors for hepatocellular carcinoma and its incidence after interferon treatment in patients with chronic hepatitis C,” Hepatology, vol. 27, no. 5, pp. 1394–1402, 1998. View at Google Scholar
  31. C. H. Hung, C. M. Lee, S. N. Lu et al., “Long-term effect of interferon alpha-2b plus ribavirin therapy on incidence of hepatocellular carcinoma in patients with hepatitis C virus-related cirrhosis,” Journal of Viral Hepatitis, vol. 13, no. 6, pp. 409–414, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. C. H. Chen, J. C. Sheu, J. T. Wang et al., “Genotypes of hepatitis C virus in chronic liver disease in Taiwan,” Journal of Medical Virology, vol. 44, no. 3, pp. 234–236, 1994. View at Publisher · View at Google Scholar · View at Scopus
  33. J. C. L. Booth, G. R. Foster, U. Kumar et al., “Chronic hepatitis C virus infections: predictive value of genotype and level of viraemia on disease progression and response to interferon alpha,” Gut, vol. 36, no. 3, pp. 427–432, 1995. View at Google Scholar · View at Scopus
  34. M. Kobayashi, E. Tanaka, T. Sodeyama, A. Urushihara, A. Matsumoto, and K. Kiyosawa, “The natural course of chronic hepatitis C: a comparison between patients with genotypes 1 and 2 hepatitis C viruses,” Hepatology, vol. 23, no. 4, pp. 695–699, 1996. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. A. Takada, M. Tsutsumi, S. C. Zhang et al., “Relationship between hepatocellular carcinoma and subtypes of hepatitis C virus: a nationwide analysis,” Journal of Gastroenterology and Hepatology, vol. 11, no. 2, pp. 166–169, 1996. View at Google Scholar · View at Scopus
  36. K. Ikeda, M. Kobayashi, T. Someya et al., “Influence of hepatitis C virus subtype on hepatocellular carcinogenesis: a multivariate analysis of a retrospective cohort of 593 patients with cirrhosis,” Intervirology, vol. 45, no. 2, pp. 71–78, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Yamauchi, M. Nakahara, H. Nakajima, K. Sakamoto, J. Hirakawa, and G. Toda, “Different prevalence of hepatocellular carcinoma between patients with liver cirrhosis due to genotype II and III of hepatitis C virus,” International Hepatology Communications, vol. 2, no. 6, pp. 328–332, 1994. View at Publisher · View at Google Scholar · View at Scopus
  38. G. H. Haydon, L. M. Jarvis, P. Simmonds, and P. C. Hayes, “Association between chronic hepatitis C infection and hepatocellular carcinoma,” The Lancet, vol. 345, no. 8954, pp. 928–929, 1995. View at Google Scholar · View at Scopus
  39. K. Tanaka, H. Ikematsu, T. Hirohata, and S. Kashiwagi, “Hepatitis C virus infection and risk of hepatocellular carcinoma among Japanese: possible role of type 1b (II) infection,” Journal of the National Cancer Institute, vol. 88, no. 11, pp. 742–746, 1996. View at Publisher · View at Google Scholar · View at Scopus
  40. H. Yotsuyanagi, K. Koike, K. Yasuda et al., “Hepatitis C virus genotypes and development of hepatocellular carcinoma,” Cancer, vol. 76, no. 8, pp. 1352–1355, 1995. View at Google Scholar · View at Scopus
  41. D. S. Lee, Y. C. Sung, and Y. S. Whang, “Distribution of HCV genotypes among blood donors, patients with chronic liver disease, hepatocellular carcinoma, and patients on maintenance hemodialysis in Korea,” Journal of Medical Virology, vol. 49, no. 1, pp. 55–60, 1996. View at Publisher · View at Google Scholar · View at Scopus
  42. E. J. Gane, N. V. Naoumov, K. P. Qian et al., “A longitudinal analysis of hepatitis C virus replication following liver transplantation,” Gastroenterology, vol. 110, no. 1, pp. 167–177, 1996. View at Publisher · View at Google Scholar
  43. E. J. Gane, B. C. Portmann, N. V. Naoumov et al., “Long-term outcome of hepatitis C infection after liver transplantation,” New England Journal of Medicine, vol. 334, no. 13, pp. 815–820, 1996. View at Publisher · View at Google Scholar · View at PubMed
  44. C. W. Shepard, L. Finelli, and M. J. Alter, “Global epidemiology of hepatitis C virus infection,” The Lancet Infectious Diseases, vol. 5, no. 9, pp. 558–567, 2005. View at Publisher · View at Google Scholar · View at PubMed
  45. F. McOmish, S. W. Chan, B. C. Dow et al., “Detection of three types of hepatitis C virus in blood donors: investigation of type-specific differences in serologic reactivity and rate of alanine aminotransferase abnormalities,” Transfusion, vol. 33, no. 1, pp. 7–13, 1993. View at Publisher · View at Google Scholar
  46. J. M. Pawlotsky, L. Tsakiris, F. Roudot-Thoraval et al., “Relationship between hepatitis C virus genotypes and sources of infection in patients with chronic hepatitis C,” Journal of Infectious Diseases, vol. 171, no. 6, pp. 1607–1610, 1995. View at Google Scholar
  47. S. G. Tisminetzky, M. Gerotto, P. Pontisso et al., “Genotypes of hepatitis C virus in Italian patients with chronic hepatitis C,” International Hepatology Communications, vol. 2, no. 2, pp. 105–112, 1994. View at Google Scholar
  48. J. Y. N. Lau, G. L. Davis, L. E. Prescott et al., “Distribution of hepatitis C virus genotypes determined by line probe assay in patients with chronic hepatitis C seen at tertiary referral centers in the United States,” Annals of Internal Medicine, vol. 124, no. 10, pp. 868–876, 1996. View at Google Scholar
  49. P. Simmonds, J. Mellor, A. Craxi et al., “Epidemiological, clinical and therapeutic associations of hepatitis C types in western European patients,” Journal of Hepatology, vol. 24, no. 5, pp. 517–524, 1996. View at Publisher · View at Google Scholar
  50. S. Mihm, A. Fayyazi, H. Hartmann, and G. Ramadori, “Analysis of histopathological manifestations of chronic hepatitis C virus infection with respect to virus genotype,” Hepatology, vol. 25, no. 3, pp. 735–739, 1997. View at Publisher · View at Google Scholar · View at PubMed
  51. L. Rubbia-Brandt, R. Quadri, K. Abid et al., “Hepatocyte steatosis is a cytopathic effect of hepatitis C virus genotype 3,” Journal of Hepatology, vol. 33, no. 1, pp. 106–115, 2000. View at Publisher · View at Google Scholar
  52. L. Rubbia-Brandt, G. Leandro, L. Spahr et al., “Liver steatosis in chronic hepatitis C: a morphological sign suggesting infection with HCV genotype 3,” Histopathology, vol. 39, no. 2, pp. 119–124, 2001. View at Publisher · View at Google Scholar
  53. P. Sharma, V. Balan, J. Hernandez et al., “Hepatic steatosis in hepatitis C virus genotype 3 infection: does it correlate with body mass index, fibrosis, and HCV risk factors?” Digestive Diseases and Sciences, vol. 49, no. 1, pp. 25–29, 2004. View at Publisher · View at Google Scholar
  54. F. D. Gordon, E. A. Pomfret, J. J. Pomposelli, W. D. Lewis, R. L. Jenkins, and U. Khettry, “Severe steatosis as the initial histologic manifestation of recurrent hepatitis C genotype 3,” Human Pathology, vol. 35, no. 5, pp. 636–638, 2004. View at Publisher · View at Google Scholar
  55. S. S. Hissar, A. Goyal, M. Kumar et al., “Hepatitis C virus genotype 3 predominates in north and central India and is associated with significant histopathologic liver disease,” Journal of Medical Virology, vol. 78, no. 4, pp. 452–458, 2006. View at Publisher · View at Google Scholar · View at PubMed
  56. D. Kumar, G. C. Farrell, C. Fung, and J. George, “Hepatitis C virus genotype 3 is cytopathic to hepatocytes: reversal of hepatic steatosis after sustained therapeutic response,” Hepatology, vol. 36, no. 5, pp. 1266–1272, 2002. View at Publisher · View at Google Scholar · View at PubMed
  57. J. Westin, H. Nordlinder, M. Lagging, G. Norkrans, and R. Wejstal, “Steatosis accelerates fibrosis development over time in hepatitis C virus genotype 3 infected patients,” Journal of Hepatology, vol. 37, no. 6, pp. 837–842, 2002. View at Publisher · View at Google Scholar
  58. L. Castera, C. Hezode, F. Roudot-Thoraval et al., “Effect of antiviral treatment on evolution of liver steatosis in patients with chronic hepatitis C: indirect evidence of a role of hepatitis C virus genotype 3 in steatosis,” Gut, vol. 53, no. 3, pp. 420–424, 2004. View at Publisher · View at Google Scholar
  59. Y. Shiratori, N. Kato, O. Yokosuka et al., “Predictors of the efficacy of interferon therapy in chronic hepatitis C virus infection,” Gastroenterology, vol. 113, no. 2, pp. 558–566, 1997. View at Google Scholar
  60. N. N. Zein, J. Rakela, E. L. Krawitt, K. R. Reddy, T. Tominaga, and D. H. Persing, “Hepatitis C virus genotypes in the United States: epidemiology, pathogenicity, and response to interferon therapy,” Annals of Internal Medicine, vol. 125, no. 8, pp. 634–639, 1996. View at Google Scholar
  61. M. H. Nguyen and E. B. Keeffe, “Prevalence and treatment of hepatitis C virus genotypes 4, 5, and 6,” Clinical Gastroenterology and Hepatology, vol. 3, supplement 2, no. 10, pp. S97–S101, 2005. View at Google Scholar
  62. H. J. Hnatyszyn, “Chronic hepatitis C and genotyping: the clinical significance of determining HCV genotypes,” Antiviral Therapy, vol. 10, no. 1, pp. 1–11, 2005. View at Google Scholar
  63. P. Halfon, A. U. Neumann, M. Bourliere et al., “Slow viral dynamics of hepatitis C virus genotype 4,” Journal of Viral Hepatitis, vol. 10, no. 5, pp. 351–353, 2003. View at Publisher · View at Google Scholar
  64. M. W. Fried, M. L. Shiffman, K. R. Reddy et al., “Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection,” New England Journal of Medicine, vol. 347, no. 13, pp. 975–982, 2002. View at Publisher · View at Google Scholar · View at PubMed
  65. S. J. Hadziyannis, H. Sette Jr, T. R. Morgan et al., “Peginterferon-alpha2a and ribavirin combination therapy in chronic hepatitis C: a randomized study of treatment duration and ribavirin dose,” Annals of Internal Medicine, vol. 140, no. 5, pp. 346–355, 2004. View at Google Scholar
  66. A. Mangia, R. Santoro, N. Minerva et al., “Peginterferon alfa-2b and ribavirin for 12 vs. 24 weeks in HCV genotype 2 or 3,” New England Journal of Medicine, vol. 352, no. 25, pp. 2609–2617, 2005. View at Publisher · View at Google Scholar · View at PubMed
  67. M. L. Yu, C. Y. Dai, J. F. Huang et al., “A randomised study of peginterferon and ribavirin for 16 vs 24 weeks in patients with genotype 2 chronic hepatitis C,” Gut, vol. 56, no. 4, pp. 553–559, 2007. View at Publisher · View at Google Scholar · View at PubMed
  68. S. D. Lee, M. L. Yu, P. N. Cheng et al., “Comparison of a 6-month course peginterferon alpha-2b plus ribavirin and interferon alpha-2b plus ribavirin in treating Chinese patients with chronic hepatitis C in Taiwan,” Journal of Viral Hepatitis, vol. 12, no. 3, pp. 283–291, 2005. View at Publisher · View at Google Scholar · View at PubMed
  69. T. Berg, C. Sarrazin, E. Herrmann et al., “Prediction of treatment outcome in patients with chronic hepatitis C: significance of baseline parameters and viral dynamics during therapy,” Hepatology, vol. 37, no. 3, pp. 600–609, 2003. View at Publisher · View at Google Scholar · View at PubMed
  70. S. Zeuzem, J. H. Lee, and W. K. Roth, “Mutations in the nonstructural 5A gene of European hepatitis C virus isolates and response to interferon alfa,” Hepatology, vol. 25, no. 3, pp. 740–744, 1997. View at Publisher · View at Google Scholar · View at PubMed
  71. N. Enomoto, I. Sakuma, Y. Asahina et al., “Mutations in the nonstructural protein 5A gene and response to interferon in patients with chronic hepatitis C virus 1b infection,” New England Journal of Medicine, vol. 334, no. 2, pp. 77–81, 1996. View at Publisher · View at Google Scholar · View at PubMed
  72. A. El-Shamy, M. Nagano-Fujii, N. Sasase, S. Imoto, S. R. Kim, and H. Hotta, “Sequence variation in hepatitis C virus nonstructural protein 5A predicts clinical outcome of pegylated interferon/ribavirin combination therapy,” Hepatology, vol. 48, no. 1, pp. 38–47, 2008. View at Publisher · View at Google Scholar · View at PubMed
  73. N. Enomoto and S. Maekawa, “HCV genetic elements determining the early response to peginterferon and ribavirin therapy,” Intervirology, vol. 53, no. 1, pp. 66–69, 2010. View at Publisher · View at Google Scholar · View at PubMed
  74. P. Munoz de Rueda, J. Casado, R. Paton et al., “Mutations in E2-PePHD, NS5A-PKRBD, NS5A-ISDR, and NS5A-V3 of hepatitis C virus genotype 1 and their relationships to pegylated interferon-ribavirin treatment responses,” Journal of Virology, vol. 82, no. 13, pp. 6644–6653, 2008. View at Google Scholar
  75. T. Berg, A. M. Marques, M. Hohne, B. Wiedenmann, U. Hopf, and E. Schreier, “Mutations in the E2-PePHD and NS5A region of hepatitis C virus type 1 and the dynamics of hepatitis C viremia decline during interferon alfa treatment,” Hepatology, vol. 32, no. 6, pp. 1386–1395, 2000. View at Google Scholar
  76. N. Akuta, F. Suzuki, Y. Kawamura et al., “Predictors of viral kinetics to peginterferon plus ribavirin combination therapy in Japanese patients infected with hepatitis C virus genotype 1b,” Journal of Medical Virology, vol. 79, no. 11, pp. 1686–1695, 2007. View at Publisher · View at Google Scholar · View at PubMed
  77. T. Asselah, L. Rubbia-Brandt, P. Marcellin, and F. Negro, “Steatosis in chronic hepatitis C: why does it really matter?” Gut, vol. 55, no. 1, pp. 123–130, 2006. View at Publisher · View at Google Scholar · View at PubMed
  78. M. Romero-Gomez, M. Del Mar Viloria, R. J. Andrade et al., “Insulin resistance impairs sustained response rate to peginterferon plus ribavirin in chronic hepatitis C patients,” Gastroenterology, vol. 128, no. 3, pp. 636–641, 2005. View at Publisher · View at Google Scholar
  79. A. Alberti, “What are the comorbidities influencing the management of patients and the response to therapy in chronic hepatitis C?” Liver International, vol. 29, supplement 1, pp. 15–18, 2009. View at Publisher · View at Google Scholar · View at PubMed
  80. C. Hezode, E. S. Zafrani, F. Roudot-Thoraval et al., “Daily cannabis use: a novel risk factor of steatosis severity in patients with chronic hepatitis C,” Gastroenterology, vol. 134, no. 2, pp. 432–439, 2008. View at Publisher · View at Google Scholar · View at PubMed
  81. G. Alvarez-Uria, J. N. Day, A. J. Nasir, S. K. Russell, and F. J. Vilar, “Factors associated with treatment failure of patients with psychiatric diseases and injecting drug users in the treatment of genotype 2 or 3 hepatitis C chronic infection,” Liver International, vol. 29, no. 7, pp. 1051–1055, 2009. View at Publisher · View at Google Scholar · View at PubMed
  82. E. Lin, Y. Hwang, S. C. Wang, Z. J. Gu, and E. Y. Chen, “An artificial neural network approach to the drug efficacy of interferon treatments,” Pharmacogenomics, vol. 7, no. 7, pp. 1017–1024, 2006. View at Publisher · View at Google Scholar · View at PubMed
  83. Y. Hwang, E. Y. Chen, Z. J. Gu et al., “Genetic predisposition of responsiveness to therapy for chronic hepatitis C,” Pharmacogenomics, vol. 7, no. 5, pp. 697–709, 2006. View at Publisher · View at Google Scholar · View at PubMed
  84. Y. Huang, H. Yang, B. B. Borg et al., “A functional SNP of interferon-gamma gene is important for interferon-alpha induced and spontaneous recovery from hepatitis C virus infection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 3, pp. 985–990, 2007. View at Publisher · View at Google Scholar · View at PubMed
  85. V. Suppiah, M. Moldovan, G. Ahlenstiel et al., “IL28B is associated with response to chronic hepatitis C interferon-alpha and ribavirin therapy,” Nature Genetics, vol. 41, no. 10, pp. 1100–1104, 2009. View at Publisher · View at Google Scholar · View at PubMed
  86. D. Ge, J. Fellay, A. J. Thompson et al., “Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance,” Nature, vol. 461, no. 7262, pp. 399–401, 2009. View at Publisher · View at Google Scholar · View at PubMed
  87. Y. Tanaka, N. Nishida, M. Sugiyama et al., “Genome-wide association of IL28B with response to pegylated interferon-alpha and ribavirin therapy for chronic hepatitis C,” Nature Genetics, vol. 41, no. 10, pp. 1105–1109, 2009. View at Publisher · View at Google Scholar · View at PubMed
  88. A. Rauch, Z. Kutalik, P. Descombes et al., “Genetic variation in IL28B is associated with chronic hepatitis C and treatment failure: a genome-wide association study,” Gastroenterology, vol. 138, no. 4, pp. 1338–1345, 2010. View at Publisher · View at Google Scholar · View at PubMed
  89. T. Kawaoka, C. N. Hayes, W. Ohishi et al., “Predictive value of the IL28B polymorphism on the effect of interferon therapy in chronic hepatitis C patients with genotypes 2a and 2b,” Journal of Hepatology, vol. 54, no. 3, pp. 408–414, 2011. View at Publisher · View at Google Scholar · View at PubMed
  90. C. Sarrazin, S. Susser, A. Doehring et al., “Importance of IL28B gene polymorphisms in hepatitis C virus genotype 2 and 3 infected patients,” Journal of Hepatology, vol. 54, no. 3, pp. 415–421, 2011. View at Publisher · View at Google Scholar · View at PubMed
  91. U. P. Neumann, T. Berg, M. Bahra et al., “Long-term outcome of liver transplants for chronic hepatitis C: a 10-year follow-up,” Transplantation, vol. 77, no. 2, pp. 226–231, 2004. View at Publisher · View at Google Scholar · View at PubMed
  92. L. M. Forman, J. D. Lewis, J. A. Berlin, H. I. Feldman, and M. R. Lucey, “The association between hepatitis C infection and survival after orthotopic liver transplantation,” Gastroenterology, vol. 122, no. 4, pp. 889–896, 2002. View at Google Scholar
  93. D. K. Moonka, D. Kim, A. Kapke, K. A. Brown, and A. Yoshida, “The influence of induction therapy on graft and patient survival in patients with and without hepatitis C after liver transplantation,” American Journal of Transplantation, vol. 10, no. 3, pp. 590–601, 2010. View at Publisher · View at Google Scholar · View at PubMed
  94. B. J. Veldt, J. J. Poterucha, K. D. Watt et al., “Impact of pegylated interferon and ribavirin treatment on graft survival in liver transplant patients with recurrent hepatitis C infection,” American Journal of Transplantation, vol. 8, no. 11, pp. 2426–2433, 2008. View at Publisher · View at Google Scholar · View at PubMed
  95. J. A. Carrion, M. Navasa, M. Garcia-Retortillo et al., “Efficacy of antiviral therapy on hepatitis C recurrence after liver transplantation: a randomized controlled study,” Gastroenterology, vol. 132, no. 5, pp. 1746–1756, 2007. View at Publisher · View at Google Scholar · View at PubMed
  96. D. Eurich, S. Boas-Knoop, M. Ruehl et al., “Relationship between the interleukin-28b gene polymorphism and the histological severity of hepatitis C virus-induced graft inflammation and the response to antiviral therapy after liver transplantation,” Liver Transplantation, vol. 17, no. 3, pp. 289–298, 2011. View at Publisher · View at Google Scholar · View at PubMed
  97. T. Fukuhara, A. Taketomi, T. Motomura et al., “Variants in IL28B in liver recipients and donors correlate with response to peg-interferon and ribavirin therapy for recurrent hepatitis C,” Gastroenterology, vol. 139, no. 5, pp. 1577–1585, 2010. View at Publisher · View at Google Scholar · View at PubMed
  98. C. M. Lange, D. Moradpour, A. Doehring et al., “Impact of donor and recipient IL28B rs12979860 genotypes on hepatitis C virus liver graft reinfection,” Journal of Hepatology, vol. 55, no. 2, pp. 322–327, 2011. View at Google Scholar
  99. M. Colonna, G. Borsellino, M. Falco, G. B. Ferrara, and J. L. Strominger, “HLA-C is the inhibitory ligand that determines dominant resistance to lysis by NK1- and NK2-specific natural killer cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 24, pp. 12000–12004, 1993. View at Publisher · View at Google Scholar
  100. N. Wagtmann, S. Rajagopalan, C. C. Winter, M. Peruzzi, and E. O. Long, “Killer cell inhibitory receptors specific for HLA-C and HLA-B identified by direct binding and by functional transfer,” Immunity, vol. 3, no. 6, pp. 801–809, 1995. View at Publisher · View at Google Scholar
  101. S. I. Khakoo, C. L. Thio, M. P. Martin et al., “HLA and NK cell inhibitory receptor genes in resolving hepatitis C virus infection,” Science, vol. 305, no. 5685, pp. 872–874, 2004. View at Publisher · View at Google Scholar · View at PubMed
  102. S. Knapp, U. Warshow, D. Hegazy et al., “Consistent beneficial effects of killer cell immunoglobulin-like receptor 2DL3 and group 1 human leukocyte antigen-C following exposure to hepatitis C virus,” Hepatology, vol. 51, no. 4, pp. 1168–1175, 2010. View at Publisher · View at Google Scholar · View at PubMed
  103. J. R. Vidal-Castineira, A. Lopez-Vazquez, R. Diaz-Pena et al., “Effect of killer immunoglobulin-like receptors in the response to combined treatment in patients with chronic hepatitis C virus infection,” Journal of Virology, vol. 84, no. 1, pp. 475–481, 2009. View at Publisher · View at Google Scholar · View at PubMed
  104. G. Ahlenstiel, M. P. Martin, X. Gao, M. Carrington, and B. Rehermann, “Distinct KIR/HLA compound genotypes affect the kinetics of human antiviral natural killer cell responses,” Journal of Clinical Investigation, vol. 118, no. 3, pp. 1017–1026, 2008. View at Publisher · View at Google Scholar · View at PubMed
  105. V. Suppiah, S. Gaudieri, N. Armstrong et al., “IL28B, HLA-C, and KIR variants additively predict response to therapy in chronic hepatitis C virus infection in a European Cohort: a cross-sectional study,” PLoS Medicine, vol. 8, no. 9, Article ID e1001092, 2011. View at Google Scholar
  106. A. D. Luster, J. C. Unkeless, and J. V. Ravetch, “Gamma-interferon transcriptionally regulates an early-response gene containing homology to platelet proteins,” Nature, vol. 315, no. 6021, pp. 672–676, 1985. View at Google Scholar
  107. L. F. Neville, G. Mathiak, and O. Bagasra, “The immunobiology of interferon-gamma inducible protein 10 kD (IP-10): a novel, pleiotropic member of the C-X-C chemokine superfamily,” Cytokine and Growth Factor Reviews, vol. 8, no. 3, pp. 207–219, 1997. View at Publisher · View at Google Scholar
  108. D. D. Taub, T. J. Sayers, C. R. Carter, and J. R. Ortaldo, “Alpha and beta chemokines induce NK cell migration and enhance NK-mediated cytolysis,” The Journal of Immunology, vol. 155, no. 8, pp. 3877–3888, 1995. View at Google Scholar
  109. D. D. Taub, A. R. Lloyd, K. Conlon et al., “Recombinant human interferon-inducible protein 10 is a chemoattractant for human monocytes and T lymphocytes and promotes T cell adhesion to endothelial cells,” Journal of Experimental Medicine, vol. 177, no. 6, pp. 1809–1814, 1993. View at Google Scholar
  110. A. I. Romero, M. Lagging, J. Westin et al., “Interferon (IFN)-gamma-inducible protein-10: association with histological results, viral kinetics, and outcome during treatment with pegylated IFN-alpha 2a and ribavirin for chronic hepatitis C virus infection,” Journal of Infectious Diseases, vol. 194, no. 7, pp. 895–903, 2006. View at Google Scholar
  111. M. Lagging, A. I. Romero, J. Westin et al., “IP-10 predicts viral response and therapeutic outcome in difficult-to-treat patients with HCV genotype 1 infection,” Hepatology, vol. 44, no. 6, pp. 1617–1625, 2006. View at Google Scholar
  112. G. Askarieh, A. Alsio, P. Pugnale et al., “Systemic and intrahepatic interferon-gamma-inducible protein 10 kDa predicts the first-phase decline in hepatitis C virus RNA and overall viral response to therapy in chronic hepatitis C,” Hepatology, vol. 51, no. 5, pp. 1523–1530, 2010. View at Google Scholar
  113. M. Lagging, G. Askarieh, F. Negro et al., “Response prediction in chronic hepatitis C by assessment of IP-10 and IL28B-related single nucleotide polymorphisms,” PLoS One, vol. 6, no. 2, Article ID e17232, 2011. View at Google Scholar
  114. G. Fattovich, L. Covolo, S. Bibert et al., “IL28B polymorphisms, IP-10 and viral load predict virological response to therapy in chronic hepatitis C,” Alimentary Pharmacology & Therapeutics, vol. 33, no. 10, pp. 1162–1172, 2011. View at Google Scholar
  115. G. L. Davis, R. Esteban-Mur, V. Rustgi et al., “Interferon alfa-2b alone or in combination with ribavirin for the treatment of relapse of chronic hepatitis C. International Hepatitis Interventional Therapy Group,” The New England Journal of Medicine, vol. 339, no. 21, pp. 1493–1499, 1998. View at Google Scholar
  116. J. G. McHutchison, S. C. Gordon, E. R. Schiff et al., “Interferon alfa-2b alone or in combination with ribavirin as initial treatment for chronic hepatitis C. Hepatitis Interventional Therapy Group,” The New England Journal of Medicine, vol. 339, no. 21, pp. 1485–1492, 1998. View at Google Scholar
  117. J. G. McHutchison, G. T. Everson, S. C. Gordon et al., “Telaprevir with peginterferon and ribavirin for chronic HCV genotype 1 infection,” The New England Journal of Medicine, vol. 360, no. 18, pp. 1827–1838, 2009. View at Google Scholar
  118. M. P. Manns, J. G. McHutchison, S. C. Gordon et al., “Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial,” The Lancet, vol. 358, no. 9286, pp. 958–965, 2001. View at Publisher · View at Google Scholar
  119. C. Hézode, N. Forestier, G. Dusheiko et al., “Telaprevir and PEGinterferon with or without ribavirin for chronic HCV infection,” The New England Journal of Medicine, vol. 360, no. 18, pp. 1839–1850, 2009. View at Google Scholar
  120. F. Suzuki, N. Akuta, Y. Suzuki et al., “Rapid loss of hepatitis C virus genotype 1b from serum in patients receiving a triple treatment with telaprevir (MP-424), pegylated interferon and ribavirin for 12 weeks,” Hepatology Research, vol. 39, no. 11, pp. 1056–1063, 2009. View at Publisher · View at Google Scholar · View at PubMed
  121. H. Nomura, H. Tanimoto, E. Kajiwara et al., “Factors contributing to ribavirin-induced anemia,” Journal of Gastroenterology and Hepatology, vol. 19, no. 11, pp. 1312–1317, 2004. View at Google Scholar
  122. S. Takaki, A. Tsubota, T. Hosaka et al., “Factors contributing to ribavirin dose reduction due to anemia during interferon alfa2b and ribavirin combination therapy for chronic hepatitis C,” Journal of Gastroenterology, vol. 39, no. 7, pp. 668–673, 2004. View at Google Scholar
  123. K. Lindahl, R. Schvarcz, A. Bruchfeld, and L. Ståhle, “Evidence that plasma concentration rather than dose per kilogram body weight predicts ribavirin-induced anemia,” Journal of Viral Hepatitis, vol. 11, no. 1, pp. 84–87, 2004. View at Publisher · View at Google Scholar
  124. H. van Vlierbergh, J. R. Delanghe, M. de Vos, and G. Leroux-Roel, “Factors influencing ribavirin induced hemolysis,” Journal of Hepatology, vol. 34, no. 6, pp. 911–916, 2001. View at Google Scholar
  125. S. Sumi, A. M. Marinaki, M. Arenas et al., “Genetic basis of inosine triphosphate pyrophosphohydrolase deficiency,” Human Genetics, vol. 111, no. 4-5, pp. 360–367, 2002. View at Publisher · View at Google Scholar · View at PubMed
  126. J. Fellay, A. J. Thompson, D. Ge et al., “ITPA gene variants protect against anemia in patients treated for chronic hepatitis C,” Nature, vol. 464, no. 7287, pp. 405–408, 2010. View at Publisher · View at Google Scholar · View at PubMed
  127. M. Shipkova, K. Lorenz, M. Oellerich, E. Wieland, and N. von Ahsen, “Measurement of erythrocyte inosine triphosphate pyrophosphohydrolase (ITPA) activity by HPLC and correlation of ITPA genotype-phenotype in a Caucasian population,” Clinical Chemistry, vol. 52, no. 2, pp. 240–247, 2006. View at Publisher · View at Google Scholar · View at PubMed
  128. S. Atanasova, M. Shipkova, D. Svinarov et al., “Analysis of ITPA phenotype-genotype correlation in the Bulgarian population revealed a novel gene variant in exon 6,” Therapeutic Drug Monitoring, vol. 29, no. 1, pp. 6–10, 2007. View at Publisher · View at Google Scholar · View at PubMed
  129. T. Maeda, S. Sumi, A. Ueta et al., “Genetic basis of inosine triphosphate pyrophosphohydrolase deficiency in the Japanese population,” Molecular Genetics and Metabolism, vol. 85, no. 4, pp. 271–279, 2005. View at Publisher · View at Google Scholar · View at PubMed
  130. J. Bierau, M. Lindhout, and J. A. Bakker, “Pharmacogenetic significance of inosine triphosphatase,” Pharmacogenomics, vol. 8, no. 9, pp. 1221–1228, 2007. View at Publisher · View at Google Scholar · View at PubMed
  131. G. Stocco, M. H. Cheok, K. R. Crews et al., “Genetic polymorphism of inosine triphosphate pyrophosphatase is a determinant of mercaptopurine metabolism and toxicity during treatment for acute lymphoblastic leukemia,” Clinical Pharmacology and Therapeutics, vol. 85, no. 2, pp. 164–172, 2009. View at Publisher · View at Google Scholar · View at PubMed
  132. J. H. Fraser, H. Meyers, J. F. Henderson, L. W. Brox, and E. E. McCoy, “Individual variation in inosine triphosphate accumulation in human erythrocytes,” Clinical Biochemistry, vol. 8, no. 6, pp. 353–364, 1975. View at Google Scholar
  133. A. J. Thompson, J. Fellay, K. Patel et al., “Variants in the ITPA gene protect against ribavirin-induced hemolytic anemia and decrease the need for ribavirin dose reduction,” Gastroenterology, vol. 139, no. 4, pp. 1181–1189, 2010. View at Publisher · View at Google Scholar · View at PubMed
  134. A. J. Thompson, R. Santoro, V. Piazzolla et al., “Inosine triphosphatase genetic variants are protective against anemia during antiviral therapy for HCV2/3 but do not decrease dose reductions of RBV or increase SVR,” Hepatology, vol. 53, no. 2, pp. 389–395, 2011. View at Publisher · View at Google Scholar
  135. H. Ochi, T. Maekawa, H. Abe et al., “ITPA polymorphism affects ribavirin-induced anemia and outcomes of therapy—a genome-wide study of Japanese HCV virus patients,” Gastroenterology, vol. 139, no. 4, pp. 1190–1197, 2010. View at Publisher · View at Google Scholar · View at PubMed
  136. N. Sakamoto, Y. Tanaka, M. Nakagawa et al., “ITPA gene variant protects against anemia induced by pegylated interferon-alpha and ribavirin therapy for Japanese patients with chronic hepatitis C,” Hepatology Research, vol. 40, no. 11, pp. 1063–1071, 2010. View at Publisher · View at Google Scholar · View at PubMed
  137. D. L. Thomas, C. L. Thio, M. P. Martin et al., “Genetic variation in IL28B and spontaneous clearance of hepatitis C virus,” Nature, vol. 461, no. 7265, pp. 798–801, 2009. View at Publisher · View at Google Scholar · View at PubMed
  138. A. Mangia, R. Santoro, M. Piattelli et al., “IL-10 haplotypes as possible predictors of spontaneous clearance of HCV infection,” Cytokine, vol. 25, no. 3, pp. 103–109, 2004. View at Publisher · View at Google Scholar
  139. C. Ishida, Y. Ikebuchi, K. Okamoto, and Y. Murawaki, “Functional gene polymorphisms of interleukin-10 are associated with liver disease progression in Japanese patients with hepatitis C virus infection,” Internal Medicine, vol. 50, no. 7, pp. 659–666, 2011. View at Google Scholar
  140. R. Zampino, D. Ingrosso, E. Durante-Mangoni et al., “Microsomal triglyceride transfer protein (MTP)-493G/T gene polymorphism contributes to fat liver accumulation in HCV genotype 3 infected patients,” Journal of Viral Hepatitis, vol. 15, no. 10, pp. 740–746, 2008. View at Publisher · View at Google Scholar · View at PubMed
  141. L. Valenti, M. Rumi, E. Galmozzi et al., “Patatin-like phospholipase domain-containing 3 I148M polymorphism, steatosis, and liver damage in chronic hepatitis C,” Hepatology, vol. 53, no. 3, pp. 791–799, 2011. View at Google Scholar