Table of Contents Author Guidelines Submit a Manuscript
Geofluids
Volume 2017 (2017), Article ID 1359325, 17 pages
https://doi.org/10.1155/2017/1359325
Research Article

Groundwater and Subsidence Modeling Combining Geological and Multi-Satellite SAR Data over the Alto Guadalentín Aquifer (SE Spain)

1Geohazards InSAR Laboratory and Modeling Group (InSARlab), Geoscience Research Department, Geological Survey of Spain (IGME), Alenza 1, 28003 Madrid, Spain
2Spanish Working Group on Ground Subsidence (SUBTER), UNESCO, 03690 Alicante, Spain
3Environmental Geology and Geomathematics, Geoscience Research Department, Geological Survey of Spain (IGME), Alenza 1, 28003 Madrid, Spain
4Research Partnership Unit IGME-UA on Radar Interferometry Applied to Ground Deformation (UNIRAD), University of Alicante, P.O. Box 99, 03080 Alicante, Spain
5Earth Observation and Geohazards Expert Group (EOEG), EuroGeoSurveys, The Geological Surveys of Europe, 36-38 Rue Joseph II, 1000 Brussels, Belgium
6Department of Earth and Environmental Science, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy

Correspondence should be addressed to Pablo Ezquerro

Received 28 April 2017; Revised 19 July 2017; Accepted 25 October 2017; Published 18 December 2017

Academic Editor: Timothy H. Dixon

Copyright © 2017 Pablo Ezquerro et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. G. Taylor, B. R. Scanlon, P. Döll et al., “Ground water and climate change,” Nature Climate Change, vol. 3, no. 4, pp. 322–329, 2013. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Wada, L. P. H. Van Beek, C. M. Van Kempen, J. W. T. M. Reckman, S. Vasak, and M. F. P. Bierkens, “Global depletion of groundwater resources,” Geophysical Research Letters, vol. 37, no. 20, Article ID L20402, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. J. S. Famiglietti, M. Lo, S. L. Ho et al., “Satellites measure recent rates of groundwater depletion in California's Central Valley,” Geophysical Research Letters, vol. 38, no. 3, Article ID L03403, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. P. M. Barlow and E. G. Reichard, Hydrogeological Journal, 2010. View at Publisher · View at Google Scholar
  5. European Union, “Science for water,” in European Commission Joint Research Centre (JRC) Thematic Report, 2017, https://ec.europa.eu/jrc/en/publication/thematicreports/science-water. View at Google Scholar
  6. Y. Wada and M. F. P. Bierkens, “Sustainability of global water use: Past reconstruction and future projections,” Environmental Research Letters, vol. 9, no. 10, Article ID 104003, 2014. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Tomas, G. Herrera, G. Cooksley, and J. Mulas, “Persistent Scatterer Interferometry subsidence data exploitation using spatial tools: The Vega Media of the Segura River Basin case study,” Journal of Hydrology, vol. 400, no. 3-4, pp. 411–428, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Terzaghi, Settlement and Consolidation of Clay, pp. 874–878, McGraw-Hill, New York, NY, USA, 1925.
  9. G. Herrera, R. Tomás, D. Monells et al., “Analysis of subsidence using TerraSAR-X data: Murcia case study,” Engineering Geology, vol. 116, no. 3-4, pp. 284–295, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Yang, Y. Luo, M. Liu, R. Wang, and H. Wang, “Research of features related to land subsidence and ground fissure disasters in the Beijing Plain,” Proceedings of the International Association of Hydrological Sciences, vol. 372, pp. 239–242, 2015. View at Publisher · View at Google Scholar
  11. M. Béjar-Pizarro, P. Ezquerro, G. Herrera et al., “Mapping groundwater level and aquifer storage variations from InSAR measurements in the Madrid aquifer, Central Spain,” Journal of Hydrology, vol. 547, pp. 678–689, 2017. View at Publisher · View at Google Scholar · View at Scopus
  12. F. Bozzano, C. Esposito, S. Franchi et al., “Understanding the subsidence process of a quaternary plain by combining geological and hydrogeological modelling with satellite InSAR data: The Acque Albule Plain case study,” Remote Sensing of Environment, vol. 168, pp. 219–238, 2015. View at Publisher · View at Google Scholar · View at Scopus
  13. T. J. Burbey and M. Zhang, “Inverse modeling using PS-InSAR for improved calibration of hydraulic parameters and prediction of future subsidence for Las Vegas Valley, USA,” Proceedings of the International Association of Hydrological Sciences (IAHS '15), vol. 372, pp. 411–416, 2015. View at Publisher · View at Google Scholar
  14. CHS, “Plan Hidrológico de la Cuenca del Segura 2015/2021. Análisis piezométrico histórico y de los últimos 25 años (1990-2014) de las masas de Agua subterráneas de la demarcación Hidrográfica del Segura. 070.057 Alto Guadalentín,” Tech. Rep., 2014, http://www.chsegura.es/chs/cuenca/sequias/pes/eeapes.html. View at Google Scholar
  15. R. Bonì, G. Herrera, C. Meisina et al., “Twenty-year advanced DInSAR analysis of severe land subsidence: The Alto Guadalentín Basin (Spain) case study,” Engineering Geology, vol. 198, pp. 40–52, 2015. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Rigo, M. Béjar-Pizarro, and J. Martínez-Díaz, “Monitoring of Guadalentín valley (southern Spain) through a fast SAR Interferometry method,” Journal of Applied Geophysics, vol. 91, pp. 39–48, 2013. View at Publisher · View at Google Scholar · View at Scopus
  17. P. J. González and J. Fernández, “Drought-driven transient aquifer compaction imaged using multitemporal satellite radar interferometry,” Geology, vol. 39, no. 6, pp. 551–554, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. A. W. Harbaugh, “MODFLOW-2005, the U.S. Geological Survey modular ground-water model—the ground-water flow process,” U.S. Geological Survey Techniques and Methods 6- A16, 2005. View at Google Scholar
  19. J. C. Cerón and A. Pulido-Bosch, “Groundwater problems resulting from CO2 pollution and overexploitation in Alto Guadalentin aquifer (Murcia, Spain),” Environmental Geology, vol. 28, no. 4, pp. 223–228, 1996. View at Publisher · View at Google Scholar · View at Scopus
  20. J. J. Martínez-Díaz, M. Bejar-Pizarro, J. A. Álvarez-Gómez et al., “Tectonic and seismic implications of an intersegment rupture. The damaging May 11th 2011 Mw 5.2 Lorca, Spain, earthquake.,” Tectonophysics, vol. 546-547, pp. 28–37, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. IGME, “Mapa Geológico de España, 1:50.000, Sheet Lorca (953),” Tech. Rep., Servicio de Publicaciones Ministerio de Industria, Madrid, Spain, 1981. View at Google Scholar
  22. J. C. Cerón, Estudio hidrogeoquímico del acuífero del Alto Guadalentín (Murcia), University of Granada, Granada, Spain, 1995, pp. 265.
  23. IGME, “Mapa Hidrogeológico de España, 1:200.000, Sheet Murcia (79),” Tech. Rep., Servicio de Publicaciones Ministerio de Industria, Madrid, 1985. View at Google Scholar
  24. F. Calvo, “La huerta de Murcia y las avenidas del Guadalentín,” Papeles del Departamento de Geografía, Nº 1, 1968-1969, pp. 111–137, 1969. View at Google Scholar
  25. AEMET, “Nota Ministerio medio Ambiente 2003,” Tech. Rep., 2003, http://repositorio.aemet.es/handle/20.500.11765/5117. View at Google Scholar
  26. CHS, “Evaluación preliminar del riesgo de inundaciones de origen fluvial en la demarcación hidrográfica del Segura,” Confederación hidrográfica del Segura, 2010, p. 37, http://www.chsegura.es/chs/cuenca/gestioninundacion/fase01.html. View at Google Scholar
  27. G. Benito, M. Rico, Y. Sánchez-Moya, A. Sopeña, V. R. Thorndycraft, and M. Barriendos, “The impact of late Holocene climatic variability and land use change on the flood hydrology of the Guadalentín River, southeast Spain,” Global and Planetary Change, vol. 70, no. 1-4, pp. 53–63, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. F. López, F. Navarro, M. E. Montaner et al., Inundaciones catastróficas, precipitaciones torrenciales y erosión en la provincia de Murcia, Nº 8, 1978-1979, págs 49-91, Papeles del Departamento de Geografía, 1979. View at MathSciNet
  29. CHS, “Plan especial ante situaciones de alerta y eventual sequía en la cuenca del Segura: 238 Confederación hidrográfica del Segura,” 298 p., 239, 2006. View at Google Scholar
  30. IGME, “Estudio para la regulación y apoyo a la gestión de los recursos hídricos subterráneos del Alto Guadalentín (Murcia),” Modelo matemático de flujo subterráneo. IGME internal report ref. 33237, 1994. View at Google Scholar
  31. CHS, “Estudio y redacción del plan de ordenación del acuífero alto Guadalentín,” Tech. Rep., 1992. View at Google Scholar
  32. CHS, “Estudio de cuantificación del volumen anual de sobreexplotación de los acuíferos de la unidad hidrogeológica 07.28 Alto Guadalentín y 07.33 Águilas,” Tech. Rep., 2005. View at Google Scholar
  33. D. Massonnet, M. Rossi, C. Carmona et al., “The displacement field of the Landers earthquake mapped by radar interferometry,” Nature, vol. 364, no. 6433, pp. 138–142, 1993. View at Publisher · View at Google Scholar · View at Scopus
  34. D. L. Galloway and J. Hoffmann, “The application of satellite differential SAR interferometry-derived ground displacements in hydrogeology,” Hydrogeology Journal, vol. 15, no. 1, pp. 133–154, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. R. Tomás, R. Romero, J. Mulas et al., “Radar interferometry techniques for the study of ground subsidence phenomena: A review of practical issues through cases in Spain,” Environmental Earth Sciences, vol. 71, no. 1, pp. 163–181, 2013. View at Publisher · View at Google Scholar · View at Scopus
  36. P. Ezquerro, G. Herrera, M. Marchamalo, R. Tomás, M. Béjar-Pizarro, and R. Martínez, “A quasi-elastic aquifer deformational behavior: Madrid aquifer case study,” Journal of Hydrology, vol. 519, pp. 1192–1204, 2014. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Béjar-Pizarro, C. Guardiola-Albert, R. P. García-Cárdenas et al., “Interpolation of GPS and Geological Data Using InSAR Deformation Maps: Method and Application to Land Subsidence in the Alto Guadalentín Aquifer (SE Spain),” Remote Sensing, vol. 8, no. 11, p. 965, 2016. View at Publisher · View at Google Scholar
  38. B. M. Kampes, R. F. Hanssen, and Z. Perski, “Radar interferometry with public domain tools,” in Proceedings of the FRINGE, pp. 1–5, 2003.
  39. P. Berardino, G. Fornaro, R. Lanari, and E. Sansosti, “A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms,” IEEE Transactions on Geoscience and Remote Sensing, vol. 40, no. 11, pp. 2375–2383, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. A. J. Hooper, “A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches,” Geophysical Research Letters, vol. 35, no. 16, Article ID L16302, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Duro, J. Inglada, J. Closa, N. Adam, and A. Arnaud, “High resolution differential interferometry using time series of ERS and ENVISAT SAR data,” in Proceedings of the FRINGE 2003, Frascati, Italy, 1-5 December 2003.
  42. P. A. Rosen, S. Hensley, G. Peltzer, and M. Simons, “Updated repeat orbit interferometry package released,” Eos Transactions American Geophysical Union, vol. 85, no. 5, p. 47, 2004. View at Google Scholar · View at Scopus
  43. R. B. Winston, “ModelMuse-A graphical user interface for MODFLOW-2005 and PHAST,” U.S. Geological Survey Techniques and Methods 6-A29, 52 pages, 2009. View at Google Scholar
  44. E. P. Poeter, M. C. Hill, D. Lu, C. R. Tiedeman, and S. Mehl, “UCODE_2014, with new capabilities to define parameters unique to predictions , calculate weights using simulated values, estimate parameters with SVD, evaluate uncertainty with MCMC, and More: Integrated Groundwater Modeling Center Report Number: GWMI 2014-02,” GWMI, 2014. View at Google Scholar
  45. E. R. Banta, ModelMate—A Graphical User Interface for Model Analysis: U.S. Geological Survey Techniques and Methods, Book 6, Chap. E4, 31 p., 2011.
  46. S. A. Leake and M. R. Lilly, “Documentation of a computer program (FHB1) for assignment of transient specified-flow and specified-head boundaries in applications of the modular finite-difference ground-water flow model (MODFLOW),” Tech. Rep., U.S. Geological Survey, 1997, Open-File Report 97-571, p. 50. View at Google Scholar
  47. M. C. Hill, E. R. Banta, A. W. Harbaugh, and E. R. Anderman, “MODFLOW-2000, the U.S. Geological Survey modular ground-water model; user guide to the observation, sensitivity, and parameter-estimation processes and three post-processing programs,” Tech. Rep., U.S. Geological Survey, 2000, Open-File Report 00-184, p. 210. View at Google Scholar
  48. S. A. Leake and D. L. Galloway, MODFLOW ground-water model—User guide to the Subsidence and Aquifer-System Compaction Package (SUB-WT) for Water-Table Aquifers: U.S. Geological Survey Techniques and Methods, Book 6, Chap. A23, 42 p., 2007.