Table of Contents Author Guidelines Submit a Manuscript
Volume 2018, Article ID 2186194, 18 pages
Research Article

Apparent Permeability Model for Shale Gas Reservoirs Considering Multiple Transport Mechanisms

College of Petroleum Engineering, China University of Petroleum, Beijing 102249, China

Correspondence should be addressed to Shijun Huang; nc.ude.puc@jhsh

Received 11 April 2017; Revised 1 June 2017; Accepted 12 March 2018; Published 4 June 2018

Academic Editor: Alexandra Amann-Hildenbrand

Copyright © 2018 Shijun Huang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Shale formation is featured in nanopores and much gas adsorptions. Gas flow in the shale matrix is not a singular viscous flow, but a combination of multiple mechanisms. Much work has been carried out to analyze apparent permeability of shale, but little attention has been paid to the effect of unique gas behavior in nanopores at high pressure and adsorbed layer on apparent permeability. This work presents a new model considering multiple transport mechanisms including viscous flow (without slip), slip flow, Knudsen diffusion, and surface diffusion in the adsorption layer. Pore diameter and mean free path of gas molecules are corrected by considering the adsorption layer and dense gas effect, respectively. Then the effects of desorption layer, surface diffusion, and gas behavior on gas apparent permeability in nanopores of shale are analyzed. The results show that surface diffusion is the dominant flow mechanism in pores with small diameter at low pressure and that the effect of adsorbed layer and dense gas on apparent permeability is strongly affected by pressure and pore diameter. From the analysis results, the permeability value calculated with the new apparent permeability model is lower than in the other model under high pressure and higher than in the other model under high pressure, so the gas production calculated using the new permeability model will be lower than using the other model at early stage and higher than using the other model at late stage.