Table of Contents Author Guidelines Submit a Manuscript
Geofluids
Volume 2018, Article ID 3818629, 19 pages
https://doi.org/10.1155/2018/3818629
Research Article

Modeling Highly Buoyant Flows in the Castel Giorgio: Torre Alfina Deep Geothermal Reservoir

1Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 4, 20126 Milano, Italy
2Department of Environmental Informatics (ENVINF), Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318 Leipzig, Germany
3Freie Universität Berlin, Hydrogeology, Malteserstr 74-100, 12249 Berlin, Germany
4Ricerca di Sistema Energetico (RSE) SpA, Via Rubattino 54, 20134 Milano, Italy

Correspondence should be addressed to Giorgio Volpi; ti.biminu.supmac@4iplov.g

Received 22 August 2017; Accepted 7 November 2017; Published 1 February 2018

Academic Editor: Francesco Italiano

Copyright © 2018 Giorgio Volpi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Rybach, “Ingrid Stober und Kurt Bucher: Geothermie,” uwf UmweltWirtschaftsForum, vol. 20, no. 2-4, pp. 197–197, 2012. View at Publisher · View at Google Scholar
  2. M. H. Dickson and M. Fanelli, “Small Geothermal Resources: A Review,” Energy Sources, vol. 16, no. 3, pp. 349–376, 2007. View at Publisher · View at Google Scholar
  3. International Energy Agency, “Energy statistics of Non-OECD countries,” Tech. rep, 2009. View at Google Scholar
  4. G. P. Eaton, R. L. Christiansen, H. M. Iyer et al., “Magma beneath Yellowstone National Park,” Science, vol. 188, no. 4190, pp. 787–796, 1975. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Morgan, D. D. Blackwell, R. E. Spafford, and R. B. Smith, “Heat flow measurements in Yellowstone Lake and the thermal structure of the Yellowstone Caldera,” Journal of Geophysical Research: Atmospheres, vol. 82, no. 26, pp. 3719–3732, 1977. View at Publisher · View at Google Scholar
  6. I. Lucchitta, “Role of heat and detachment in continental extension as viewed from the eastern basin and range province in Arizona,” Tectonophysics, vol. 174, no. 1-2, pp. 77–114, 1990. View at Publisher · View at Google Scholar · View at Scopus
  7. L. W. Younker, P. W. Kasameyer, and J. D. Tewhey, “Geological, geophysical, and thermal characteristics of the Salton Sea Geothermal Field, California,” Journal of Volcanology and Geothermal Research, vol. 12, no. 3-4, pp. 221–258, 1982. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Ravnik, D. Rajver, M. Poljak, and M. Živčić, “Overview of the geothermal field of Slovenia in the area between the Alps, the Dinarides and the Pannonian basin,” Tectonophysics, vol. 250, no. 1-3, pp. 135–149, 1995. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Werner and H. Kahle, “A geophysical study of the Rhinegraben — I. Kinematics and geothermics,” The Geophysical Journal of the Royal Astronomical Society, vol. 62, no. 3, pp. 617–629, 1980. View at Publisher · View at Google Scholar · View at Scopus
  10. J. P. Brun, M.-A. Gutscher, and dekorp-ecors teams, “Deep crustal structure of the Rhine Graben from dekorp-ecors seismic reflection data: A summary,” Tectonophysics, vol. 208, no. 1-3, pp. 139–147, 1992. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Bellani, A. Brogi, A. Lazzarotto, D. Liotta, and G. Ranalli, “Heat flow, deep temperatures and extensional structures in the Larderello Geothermal Field (Italy): Constraints on geothermal fluid flow,” Journal of Volcanology and Geothermal Research, vol. 132, no. 1, pp. 15–29, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Barelli, R. Bertani, G. Cappetti, and A. Ceccarelli, “An update on Travale Radicondoli geothermal field,” in Proceedings of the Proceedings World Geothermal Congress, pp. 1581–1586, Florence , Italy, 1995.
  13. A. Barelli, G. Cappetti, and G. Stefani, “Optimum exploitation strategy at Larderello-Valle Secolo,” in Proceedings of the Proceedings World Geothermal Congress, pp. 1779–1783, Florence , Italy, 1995.
  14. A. Barelli, G. Cappetti, and G. Stefani, “Results of deep drilling in the LarderelloTravale/Radicondoli geothermal area,” in Proceedings of the Proceedings World Geothermal Congress, pp. 1275–1278, Florence , Italy, 1995.
  15. A. Barelli, G. Bertini, G. Buonasorte, G. Cappetti, and A. Fiordelisi, “Recent deep exploration results at the margins of the LarderelloTravale geothermal system,” in Proceedings of the Proceedings World Geothermal Congress, pp. 965–970, Kyushu-Tohoku, Japan, 2000.
  16. F. Batini, A. Brogi, A. Lazzarotto, D. Liotta, and E. Pandeli, “Geological features of Larderello-Travale and Mt. Amiata geothermal areas (southern Tuscany, Italy),” Episodes, vol. 26, no. 3, pp. 239–244, 2003. View at Google Scholar · View at Scopus
  17. G. N. Tiwari and M. K. Ghosal, “Renewable energy resources: Basic principles and applications,” in Proceedings of the International Journal of Industrial Engineering Computations, vol. 3, pp. 649–662, 2005.
  18. P. Romagnoli, A. Arias, A. Barelli, M. Cei, and M. Casini, “An updated numerical model of the Larderello-Travale geothermal system, Italy,” Geothermics, vol. 39, no. 4, pp. 292–313, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Carmignani, F. A. Decandia, P. L. Fantozzi, A. Lazzarotto, D. Liotta, and M. Meccheri, “Tertiary extensional tectonics in Tuscany (Northern Apennines, Italy),” Tectonophysics, vol. 238, no. 1-4, pp. 295–315, 1994. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Brunet, P. Monié, L. Jolivet, and J.-P. Cadet, “Migration of compression and extension in the Tyrrhenian Sea, insights from 40Ar/39Ar ages on micas along a transect from Corsica to Tuscany,” Tectonophysics, vol. 321, no. 1, pp. 127–155, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Della Vedova, S. Bellani, G. Pellis, and P. Squarci, “Deep temperatures and surface heat flow distribution,” in Anatomy of an orogen: the Apennines and adjacent Mediterranean basins, pp. 65–76, 2001. View at Google Scholar
  22. B. Della Vedova, C. Vecellio, S. Bellani, and U. Tinivella, “Thermal modelling of the Larderello geothermal field (Tuscany, Italy),” International Journal of Earth Sciences, vol. 97, no. 2, pp. 317–332, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Cataldi and M. Rendina, “Recent discovery of a new geothermal field in Italy: Alfina,” Geothermics, vol. 2, no. 3-4, pp. 106–116, 1973. View at Publisher · View at Google Scholar · View at Scopus
  24. G. Buonasorte, R. Cataldi, A. Ceccarelli et al., “Ricerca ed esplorazione nell'area geotermica di Torre Alfina (Lazio-Umbria),” in Bollettino della Società Geologica Italiana, vol. 107, pp. 265–337, 1988. View at Google Scholar
  25. Colucci and Guandalini, “Modelli geologici e simulazione numerica di sistemi geotermici,” Rapporto di Ricerca di Sistema, 2014, http://doc.rse-web.it/doc/doc-sfoglia/15000985-316054/15000985-316054.html.
  26. F. Barberi, G. Buonasorte, R. Cioni et al., “Plio-Pleistocene geological evolution of the geothermal area of Tuscany and Latium,” Mem. Descr. Carta Geol. Ital, vol. 49, pp. 77–133, 1994. View at Google Scholar
  27. C. Chiarabba, A. Amato, and A. Fiordelisi, “Upper crustal tomographic images of the Amiata-Vulsini geothermal region, central Italy,” Journal of Geophysical Research: Atmospheres, vol. 100, no. 3, pp. 4053–4066, 1995. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Chiodini, F. Frondini, and F. Ponziani, “Deep structures and carbon dioxide degassing in Central Italy,” Geothermics, vol. 24, no. 1, pp. 81–94, 1995. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Doveri, M. Lelli, L. Marini, and B. Raco, “Revision, calibration, and application of the volume method to evaluate the geothermal potential of some recent volcanic areas of Latium, Italy,” Geothermics, vol. 39, no. 3, pp. 260–269, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. M. L. Carapezza, M. Ranaldi, A. Gattuso, N. M. Pagliuca, and L. Tarchini, “The sealing capacity of the cap rock above the Torre Alfina geothermal reservoir (Central Italy) revealed by soil CO2 flux investigations,” Journal of Volcanology and Geothermal Research, vol. 291, pp. 25–34, 2015. View at Publisher · View at Google Scholar · View at Scopus
  31. G. Buonasorte, E. Pandeli, and A. Fiordelisi, “The Alfina 15 Well; deep geological data from northern Latium (Torre Alfina geothermal area),” Bollettino della Societa Geologica Italiana, pp. 823–831, 1991. View at Google Scholar
  32. E. U. Antunez, S. K. Sanyal, A. J. Menzies et al., “Forecasting well and reservoir behavior using numerical simulation, Uenotai geothermal field, Akita prefecture, Japan,” in Proceedings of the 1990 International Symposium on Geothermal Energy, pp. 1255–1262, August 1990. View at Scopus
  33. E. U. Antúnez, G. S. Bodvarsson, and M. A. Walters, “Numerical simulation study of the Northwest Geysers geothermal field, a case study of the Coldwater Creek steamfield,” Geothermics, vol. 23, no. 2, pp. 127–141, 1994. View at Publisher · View at Google Scholar · View at Scopus
  34. M. O'Sullivan, B. Barnett, and Y. Razali, “Numerical simulation of the Kamojang Geothermal Field, Indonesia,” in Proceedings of the 1990 International Symposium on Geothermal Energy, pp. 1317–1324, August 1990. View at Scopus
  35. M. J. O'Sullivan, K. Pruess, and M. J. Lippmann, “State of the art geothermal reservoir simulation,” Geothermics, vol. 30, no. 4, pp. 395–429, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Hanano, “Reservoir engineering studies of the matsukawa geothermal field, Japan,” in Proceedings of the 1992 Annual Meeting of the Geothermal Resources Council, pp. 643–650, October 1992. View at Scopus
  37. M. Hanano, “Simulation study of the Matsukawa geothermal reservoir: Natural state and its response to exploitation,” Journal of Energy Resources Technology-Transactions of the ASME, vol. 114, no. 4, pp. 309–314, 1992. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Axelsson and G. Bjornsson, “Detailed three-dimensional modeling of the Botn hydrothermal system in N-Iceland,” in Proceedings of the 18th Workshop on Geothermal Reservoir Engineering, pp. 159–166, Stanford University, Stanford, California, 1993.
  39. M. Pham and A. J. Menzies, “Results from a field-wide numerical model of the geysers geothermal field, California,” in Proceedings of the 1993 Annual Meeting on Utilities and Geothermal: An Emerging Partnership, pp. 259–265, October 1993. View at Scopus
  40. M. Pham, A. J. Menzies, S. K. Sanyal et al., “Numerical modeling of the high-temperature geothermal system of Amatitlan, Guatemala,” in Proceedings of the 1996 Annual Meeting of the Geothermal Resources Council, pp. 833–838, October 1996. View at Scopus
  41. R. Bertani and G. Cappetti, “Numerical simulation of the Monteverdi zone (western border of the Larderello geothermal field,” in Proceedings of the Proceedings World Geothermal Congress 95, pp. 1735–1740, Florence, 1995.
  42. M. A. Antics, “Computer simulation of the Oradea geothermal reservoir,” in Proceedings of the 22nd Workshop on Geothermal Reservoir Engineering, pp. 491–495, Stanford University, Stanford, Calif, USA, 1997.
  43. P. Fulignati, P. Marianelli, A. Sbrana, and V. Ciani, “3D geothermal modelling of the mount amiata hydrothermal system in Italy,” Energies, vol. 7, no. 11, pp. 7434–7453, 2014. View at Publisher · View at Google Scholar · View at Scopus
  44. T. Li, S. Shiozawa, and M. W. McClure, “Thermal breakthrough calculations to optimize design of a multiple-stage Enhanced Geothermal System,” Geothermics, vol. 64, pp. 455–465, 2016. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Caputo, “Diffusion of fluids in porous media with memory,” Geothermics, vol. 28, no. 1, pp. 113–130, 1999. View at Publisher · View at Google Scholar · View at Scopus
  46. K. Nicholson, Geothermal fluids: chemistry and exploration techniques, Springer Science & Business Media, 2012.
  47. M. G. Blöcher, G. Zimmermann, I. Moeck, W. Brandt, A. Hassanzadegan, and F. Magri, “3D numerical modeling of hydrothermal processes during the lifetime of a deep geothermal reservoir,” Geofluids, vol. 10, no. 3, pp. 406–421, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. TW & LKW Geotermia Italia S.p.A., Impianto pilota geotermico Castel Giorgio (TR). Progetto definitivo e programma lavori, 2013, http://www.va.minambiente.it/it-IT/Oggetti/Documentazione/1373/1855?Testo=%20Progetto%20e%20Programma%20Lavori&pagina=1#form-cercaDocumentazione.
  49. O. Kolditz, S. Bauer, L. Bilke et al., “OpenGeoSys: An open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media,” Environmental Earth Sciences, vol. 67, no. 2, pp. 589–599, 2012. View at Publisher · View at Google Scholar · View at Scopus
  50. H.-J. G. Diersch, Feflow: Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media, Springer-Verlag Berlin Heidelberg, Berlin, Germany, 2014. View at Publisher · View at Google Scholar · View at Scopus
  51. F. A. Decandia, A. Lazzarotto, D. Liotta, L. Cernobori, and R. Nicolich, “traverse: insights on post-collisional evolution of Northern Apennines,” The CROP, vol. 03, pp. 427–439, 1998. View at Google Scholar
  52. D. Liotta, L. Cernobori, and R. Nicolicl, “Restricted rifting and its coexistence with compressional structures: Results from the CROP 3 traverse (northern Apennines, Italy),” Terra Nova, vol. 10, no. 1, pp. 16–20, 1998. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Brogi, A. Lazzarotto, D. Liotta, and G. Ranalli, “Extensional shear zones as imaged by reflection seismic lines: The Lardello geothermal field (central Italy),” Tectonophysics, vol. 363, no. 1-2, pp. 127–139, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Brogi, A. Lazzarotto, D. Liotta et al., “Crustal structures in the geothermal areas of southern Tuscany (Italy): Insights from the CROP 18 deep seismic reflection lines,” Journal of Volcanology and Geothermal Research, vol. 148, no. 1-2, pp. 60–80, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. E. Carminati and C. Doglioni, “Mediterranean tectonics,” Encyclopedia of Geology, vol. 2, pp. 135–146, 2005. View at Google Scholar
  56. G. Buonasorte, A. Fiordelisi, E. Pandeli, U. Rossi, and F. Sollevanti, “Stratigraphic correlations and structural setting of the pre- neoautochthonous sedimentary sequences of northern Latium,” Periodico di Mineralogia, vol. 56, no. 2-3, pp. 111–122, 1987. View at Google Scholar · View at Scopus
  57. G. Buonasorte, G. M. Cameli, A. Fiordelisi, M. Parotto, and I. Perticone, “Results of geothermal exploration in Central Italy (Latium-Campania),” in Proceedings of the In Proceedings of the World Geothermal Congress, pp. 18–31, Florence, Italy, 1995.
  58. L. Petracchini, D. Scrocca, S. Spagnesi, and F. Minelli, “3D geological modeling to support the assessment of conventional and unconventional geothermal resources in the latium region (Central Italy),” in Proceedings of the In World Geothermal Congress, pp. 19–25, 2015.
  59. A. Minissale, “The Larderello geothermal field: a review,” Earth-Science Reviews, vol. 31, no. 2, pp. 133–151, 1991. View at Publisher · View at Google Scholar · View at Scopus
  60. F. Rossetti, C. Faccenna, L. Jolivet, R. Funiciello, F. Tecce, and C. Brunet, “Syn- versus post-orogenic extension: The case study of Giglio Island (Northern Tyrrhenian Sea, Italy),” Tectonophysics, vol. 304, no. 1-2, pp. 71–93, 1999. View at Publisher · View at Google Scholar · View at Scopus
  61. L. D. Nardi, G. Pieretti, and M. Rendina, “Stratigrafia dei terreni perforati dai sondaggi ENEL nell9area geotermica di Torre Alfina,” Bollettino della Societa Geologica Italiana, vol. 96, no. 3, pp. 403–422, 1977. View at Google Scholar
  62. D. Cosentino, P. Cipollari, P. Marsili, and D. Scrocca, “Geology of the central Apennines: A regional review,” Journal of the Virtual Explorer, vol. 36, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. G. Vignaroli, A. Pinton, A. A. De Benedetti et al., “Structural compartmentalisation of a geothermal system, the Torre Alfina field (central Italy),” Tectonophysics, vol. 608, pp. 482–498, 2013. View at Publisher · View at Google Scholar · View at Scopus
  64. D. Piscopo, M. Gattiglio, E. Sacchi, and E. Destefanis, “Tectonically-related fluid circulation in the san casciano dei bagni-sarteano area (m. cetona ridge-southern tuscany): a coupled structural and geochemical investigation,” Bollettino della Societa Geologica Italiana, vol. 128, no. 2, pp. 575–586, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. A. Costantini, C. Ghezzo, and A. Lazzarotto, “Carta geologica dell'area geotermica di Torre Alfina (prov. di Siena--Viterbo--Terni). Ente Nazionale per l'Energia Elettrica (ENEL, Unitα Nazionale Geotermica Pisa. Cartografia S.EL.C.A,” Carta geologica dell'area geotermica di Torre Alfina (prov. di Siena--Viterbo--Terni). Ente Nazionale per l'Energia Elettrica (ENEL, Unitα Nazionale Geotermica Pisa. Cartografia S.EL.C.A, 1984. View at Google Scholar
  66. L. Carmignani and A. Lazzarotto, “Carta geologica della Toscana / geological Map of Tuscany (Italy,” in Regione Toscana, Direzione delle Politiche Territoriali e Ambientali-Servizio geologico, vol. 1, Carta geologica della Toscana / geological Map of Tuscany (Italy) 1, 250000. Regione Toscana, 2004. View at Google Scholar
  67. F. Magri, N. Inbar, C. Siebert, E. Rosenthal, J. Guttman, and P. Möller, “Transient simulations of large-scale hydrogeological processes causing temperature and salinity anomalies in the Tiberias Basin,” Journal of Hydrology, vol. 520, pp. 342–355, 2015. View at Publisher · View at Google Scholar · View at Scopus
  68. EMS-I, Groundwater Modeling System 6.0. Environmental Modeling Systems, Inc, http://www.aquaveo.com/software/gms-groundwater-modeling-system-introduction, 2006.
  69. L. Marini, F. Franceschini, M. Ghigliotti, M. Guidi, and A. Merla, “Valutazione del potenziale geotermico nazionale. ENEA-Geotermica Italiana Report for the Ministero dellIndustria,” del Commercio e dellArtigianato, 1993. View at Google Scholar
  70. G. Giordano, A. A. De Benedetti, A. Diana et al., “The Colli Albani mafic caldera (Roma, Italy): Stratigraphy, structure and petrology,” Journal of Volcanology and Geothermal Research, vol. 155, no. 1-2, pp. 49–80, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. E. A. Porras, T. Tanaka, H. Fujii, and R. Itoi, “Numerical modeling of the Momotombo geothermal system, Nicaragua,” Geothermics, vol. 36, no. 4, pp. 304–329, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. E. M. Llanos, S. J. Zarrouk, and R. A. Hogarth, “Numerical model of the Habanero geothermal reservoir, Australia,” Geothermics, vol. 53, pp. 308–319, 2015. View at Publisher · View at Google Scholar · View at Scopus
  73. M. J. O'sullivan, “Geothermal reservoir simulation,” International Journal of Energy Research, vol. 9, no. 3, pp. 319–332, 1985. View at Publisher · View at Google Scholar · View at Scopus
  74. G. S. Bodvarsson, K. Pruess, V. Stefansson et al., Natural state model of the Nesjavellir geothermal field, Iceland (No. SGP-TR-93-17). Lawrence Berkeley National Laboratory (LBNL), Earth Sciences Division, Berkeley, CA, USA, National Energy Authority of Iceland, Reykjavik, Iceland; Reykjavik Municipal District Heating Service, Reykjavik, Iceland, 1986.
  75. K. Pruess, J. S. Y. Wang, and Y. W. Tsang, “On thermohydrologic conditions near high‐level nuclear wastes emplaced in partially saturated fractured tuff: 1. Simulation studies with explicit consideration of fracture effects,” Water Resources Research, vol. 26, no. 6, pp. 1235–1248, 1990. View at Publisher · View at Google Scholar · View at Scopus
  76. B. M. Feather and R. C. M. Malate, “Numerical modeling of the Mita geothermal field, Cerro Blanco, Guatemala,” in Proceedings of the In Proceedings of the Thirty-Eighth Workshop on Geothermal Reservoir Engineering, pp. 11–13, Stanford University, Stanford, CA, February 2013.
  77. A. Ebigbo, J. Niederau, G. Marquart et al., “Influence of depth, temperature, and structure of a crustal heat source on the geothermal reservoirs of Tuscany: numerical modelling and sensitivity study,” Geothermal Energy, vol. 4, no. 1, article no. 5, 2016. View at Publisher · View at Google Scholar · View at Scopus