Table of Contents Author Guidelines Submit a Manuscript
Geofluids
Volume 2019, Article ID 7213050, 18 pages
https://doi.org/10.1155/2019/7213050
Research Article

Nature and Origin of Mineralizing Fluids in Hyperextensional Systems: The Case of Cretaceous Mg Metasomatism in the Pyrenees

1Université de Lorraine, CNRS, CREGU, GeoRessources, F-54000 Nancy, France
2Université Grenoble Alpes, CNRS, ISTerre, F-38000 Grenoble, France
3CRPG-CNRS, Université de Lorraine, UMR 7358, 54501 Vandoeuvre-lès-Nancy Cedex, France
4Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, UMR 7154 CNRS, F-75005 Paris, France
5Geosciences Environnement Toulouse (GET), OMP, CNRS, IRD, Université de Toulouse, 14 Avenue Edouard Belin, 31400 Toulouse, France
6Total, CSTJF, Avenue Larribau, F-64018 Pau, France
7M&U SAS, 3 Rue des Abattoirs, 38120 Saint-Egrève, France

Correspondence should be addressed to Benoît Quesnel; ac.lavalu@1.lenseuq.tioneb

Received 17 January 2019; Revised 17 May 2019; Accepted 28 May 2019; Published 17 July 2019

Academic Editor: Fabien Magri

Copyright © 2019 Benoît Quesnel et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Boulvais, G. Ruffet, J. Cornichet, and M. Mermet, “Cretaceous albitization and dequartzification of Hercynian peraluminous granite in the Salvezines Massif (French Pyrénées),” Lithos, vol. 93, no. 1-2, pp. 89–106, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Clerc and Y. Lagabrielle, “Thermal control on the modes of crustal thinning leading to mantle exhumation: insights from the Cretaceous Pyrenean hot paleomargins,” Tectonics, vol. 33, no. 7, pp. 1340–1359, 2014. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Monchoux, Les lherzolites pyrénéenes. Contribution à l’étude de leur minéralogie, de leur genèse et de leurs transformations, Th’se d’état, Univ. Toulouse, 1970.
  4. M.-C. Boiron, P. Boulvais, M. Cathelineau, D. Banks, N. Calvayrac, and G. Hubert, Fluid Circulation at the Origin of the Trimouns Talc Deposit (Pyrenees, France), ECROFI XVIII, Siena, 2005.
  5. M.-C. Boiron, M. Cathelineau, J. Dubessy, C. Fabre, P. Boulvais, and D. Banks, “Na Ca-Mg rich brines and talc formation in the giant talc deposit of Trimouns (Pyrénées): fluid inclusion chemistry and stable isotope study,” in European Current Research on Fluid Inclusions (ECROFI-XIX), p. 1, University of Bern, Switzerland, 2007. View at Google Scholar
  6. P. Boulvais, P. de Parseval, A. D’Hulst, and P. Paris, “Carbonate alteration associated with talc-chlorite mineralization in the Eastern Pyrenees, with emphasis on the St. Barthelemy Massif,” Mineralogy and Petrology, vol. 88, no. 3-4, pp. 499–526, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Boutin, 2tude des conditions de formation du gisement de talc-chlorite de Trimouns, [Ph. D. thesis], Univesrité de Toulouse, 2016.
  8. B. Moine, J.-P. Fortuné, P. Moreau, and F. Viguier, “Comparative mineralogy, geochemistry, and conditions of formation of two metasomatic talc and chlorite deposits; Trimouns (Pyrenees, France) and Rabenwald (Eastern Alps, Austria),” Economic Geology, vol. 84, no. 5, pp. 1398–1416, 1989. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Renard, J. Pironon, J. Sterpenich, C. Carpentier, M. Lescanne, and E. C. Gaucher, “Diagenesis in Mesozoic carbonate rocks in the North Pyrénées (France) from mineralogy and fluid inclusion analysis: example of Rousse reservoir and caprock,” Chemical Geology, vol. 508, pp. 30–46, 2018. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Boutin, M. de Saint Blanquat, M. Poujol et al., “Succession of Permian and Mesozoic metasomatic events in the Eastern Pyrenees with emphasis on the Trimouns talc–chlorite deposit,” International Journal of Earth Sciences, vol. 105, no. 3, pp. 747–770, 2016. View at Publisher · View at Google Scholar · View at Scopus
  11. O. Dauteuil and L. E. Ricou, “Hot-fluid circulation as an origin for the North Pyrenean Cretaceous metamorphism,” Geodinamica Acta, vol. 3, no. 3, pp. 237–249, 1989. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Fallourd, M. Poujol, P. Boulvais, J.-L. Paquette, M. de Saint Blanquat, and P. Rémy, “In situ LA-ICP-MS U–Pb titanite dating of Na–Ca metasomatism in orogenic belts: the North Pyrenean example,” International Journal of Earth Sciences, vol. 103, no. 3, pp. 667–682, 2014. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Poujol, P. Boulvais, and J. Kosler, “Regional-scale Cretaceous albitization in the Pyrenees: evidence from in situ U–Th–Pb dating of monazite, titanite and zircon,” Journal of the Geological Society, vol. 167, no. 4, pp. 751–767, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. U. Schärer, P. de Parseval, M. Polvé, and M. de Saint Blanquat, “Formation of the Trimouns talc chlorite deposit from persistent hydrothermal activity between 112 and 97 Ma,” Terra Nova, vol. 11, no. 1, pp. 30–37, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Lagabrielle and J.-L. Bodinier, “Submarine reworking of exhumed subcontinental mantle rocks: field evidence from the Lherz peridotites, French Pyrenees,” Terra Nova, vol. 20, no. 1, pp. 11–21, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. J. M. Golberg and A. F. Leyreloup, “High temperature-low pressure Cretaceous metamorphism related to crustal thinning (Eastern North Pyrenean Zone, France),” Contributions to Mineralogy and Petrology, vol. 104, no. 2, pp. 194–207, 1990. View at Publisher · View at Google Scholar · View at Scopus
  17. J.-M. Golberg and H. Maluski, “Données nouvelles et mise au point sur l’âge du métamorphisme pyrénéen,” Comptes Rendus de l'académie des Sciences de Paris, vol. 306, pp. 429–435, 1988. View at Google Scholar
  18. J.-M. Golberg, Le métamorphisme mésozoïque dans la partie orientale des Pyrénées: relation avec l’évolution de la chaîne au Crétacé, [M.S. thesis], Montpellier II, 1987.
  19. D. Vielzeuf and J. Kornprobst, “Crustal splitting and the emplacement of Pyrenean lherzolites and granulites,” Earth and Planetary Science Letters, vol. 67, no. 1, pp. 87–96, 1984. View at Publisher · View at Google Scholar · View at Scopus
  20. W. L. Pohl, Economic Geology Principles and Practice: Metals, Minerals, Coal and Hydrocarbons – Introduction to Formation and Sustainable Exploitation of Mineral Deposits, Wiley-Blackwell, Oxford, UK, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Choukroune, X. Le Pichon, M. Seguret, and J.-C. Sibuet, “Bay of Biscay and Pyrenees,” Earth and Planetary Science Letters, vol. 18, no. 1, pp. 109–118, 1973. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Choukroune and M. Mattauer, “Tectonique des plaques et Pyrenees; sur le fonctionnement de la faille transformante nord-pyreneenne; comparaisons avec des modeles actuels,” Bulletin de la Societe Geologique de France, vol. S7-XX, no. 5, pp. 689–700, 1978. View at Publisher · View at Google Scholar
  23. X. Le Pichon, J. Bonnin, and J.-C. Sibuet, “La faille nord-pyrénéenne: faille transformante liée à l’ouverture du golfe de Gascogne,” Comptes Rendus Hebdomadaires des séances de l'académie des Sciences Série D, vol. 271, pp. 1941–1944, 1970. View at Google Scholar
  24. J.-L. Olivet, “La cinématique de la plaque ibérique,” Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine, vol. 20, pp. 131–195, 1996. View at Google Scholar
  25. M. de Saint Blanquat, M. Brunel, and M. Mattauer, “Les zones de cisaillements du massif Nord Pyrénéen du Saint Barthélémy, témoins probables de l’extension crustale d’âge crétacé,” Comptes Rendus de l'académie des Sciences de Paris, vol. 303, pp. 1339–1344, 1986. View at Google Scholar
  26. F. Albarède and A. Michard-Vitrac, “Age and significance of the North Pyrenean metamorphism,” Earth and Planetary Science Letters, vol. 40, no. 3, pp. 327–332, 1978. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Clerc, A. Lahfid, P. Monié et al., “High-temperature metamorphism during extreme thinning of the continental crust: a reappraisal of the North Pyrenean passive paleomargin,” Solid Earth, vol. 6, no. 2, pp. 643–668, 2015. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Montigny, B. Azambre, M. Rossy, and R. Thuizat, “K-Ar study of Cretaceous magmatism and metamorphism in the Pyrenees: age and length of rotation of the Iberian Peninsula,” Tectonophysics, vol. 129, no. 1-4, pp. 257–273, 1986. View at Publisher · View at Google Scholar · View at Scopus
  29. P. De Parseval, Étude minéralogique et géochimique du gisement de talc et chlorite de Trimouns, [Ph. D. thesis], Université de Toulouse III, 1992.
  30. P. De Parseval, F. Fontan, and T. Agouy, “Composition chimique des minéraux de terres rares de Trimouns (Ariège, France),” Comptes Rendus de l'académie des Sciences de Paris, vol. 625, no. 630, p. 324, 1997. View at Google Scholar
  31. P. De Parseval, S. Jiang, F. Fontan, F. Martins, and J. Freeet, “Geology and ore genesis of the Trimouns talc chlorite ore deposit,” Acta Petrologica Sinica, vol. 20, pp. 877–886, 2004. View at Google Scholar
  32. M. de Saint Blanquat, La faille normale ductile du massif du Saint Barthélémy (age et signification de l’extension crustale dans la Zone Nord Pyrénéenne), [Ph.D. thesis], Université de Montpellier II, France, 1989.
  33. M. de Saint Blanquat, J. M. Lardeaux, and M. Brunel, “Petrological arguments for high-temperature extensional deformation in the Pyrenean Variscan crust (Saint Barthélémy Massif, Ariège, France),” Tectonophysics, vol. 177, no. 1-3, pp. 245–262, 1990. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Leisen, M.-C. Boiron, A. Richard, and J. Dubessy, “Determination of Cl and Br concentrations in individual fluid inclusions by combining microthermometry and LA-ICPMS analysis: implications for the origin of salinity in crustal fluids,” Chemical Geology, vol. 330-331, pp. 197–206, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Dubessy, T. Lhomme, M. C. Boiron, and F. Rull, “Determination of chlorinity in aqueous fluids using Raman spectroscopy of the stretching band of water at room temperature: application to fluid inclusions,” Applied Spectroscopy, vol. 56, no. 1, pp. 99–106, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. M.-C. Caumon, J. Dubessy, P. Robert, and A. Tarantola, “Fused-silica capillary capsules (FSCCs) as reference synthetic aqueous fluid inclusions to determine chlorinity by Raman spectroscopy,” European Journal of Mineralogy, vol. 25, no. 5, pp. 755–763, 2013. View at Publisher · View at Google Scholar · View at Scopus
  37. D. A. Banks and B. W. D. Yardley, “Crush-leach analysis of fluid inclusions in small natural and synthetic samples,” Geochimica et Cosmochimica Acta, vol. 56, no. 1, pp. 245–248, 1992. View at Publisher · View at Google Scholar · View at Scopus
  38. D. A. Banks, G. Guiliani, B. W. D. Yardley, and A. Cheilletz, “Emerald mineralisation in Colombia: fluid chemistry and the role of brine mixing,” Mineralium Deposita, vol. 35, no. 8, pp. 699–713, 2000. View at Publisher · View at Google Scholar · View at Scopus
  39. S. A. Gleeson, B. W. D. Yardley, I. A. Munz, and A. J. Boyce, “Infiltration of basinal fluids into high-grade basement, South Norway: sources and behaviour of waters and brines,” Geofluids, vol. 3, no. 1, 48 pages, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Bonifacie, J.-L. Charlou, N. Jendrzejewski, P. Agrinier, and J.-P. Donval, “Chlorine isotopic compositions of high temperature hydrothermal vent fluids over ridge axes,” Chemical Geology, vol. 221, no. 3-4, pp. 279–288, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Bonifacie, C. Monnin, N. Jendrzejewski, P. Agrinier, and M. Javoy, “Chlorine stable isotopic composition of basement fluids of the eastern flank of the Juan de Fuca Ridge (ODP Leg 168),” Earth and Planetary Science Letters, vol. 260, no. 1-2, pp. 10–22, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. H. G. M. Eggenkamp, d37Cl, the geochemistry of chlorine isotopes, [Ph. D. thesis], Utrecht University, 1994.
  43. A. Godon, N. Jendrzejewski, H. G. M. Eggenkamp et al., “A cross-calibration of chlorine isotopic measurements and suitability of seawater as the international reference material,” Chemical Geology, vol. 207, no. 1-2, pp. 1–12, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. T. Giunta, M. Ader, M. Bonifacie, P. Agrinier, and M. Coleman, “Pre-concentration of chloride in dilute water-samples for precise δ37Cl determination using a strong ion-exchange resin: application to rainwaters,” Chemical Geology, vol. 413, pp. 86–93, 2015. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Godon, N. Jendrzejewski, M. Castrec-Rouelle et al., “Origin and evolution of fluids from mud volcanoes in the Barbados accretionary complex,” Geochimica et Cosmochimica Acta, vol. 68, no. 9, pp. 2153–2165, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. R. N. Clayton and T. K. Mayeda, “The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis,” Geochimica et Cosmochimica Acta, vol. 27, no. 1, pp. 43–52, 1963. View at Publisher · View at Google Scholar · View at Scopus
  47. Y.-F. Zheng, “Calculation of oxygen isotope fractionation in anhydrous silicate minerals,” Geochimica et Cosmochimica Acta, vol. 57, no. 5, pp. 1079–1091, 1993. View at Publisher · View at Google Scholar · View at Scopus
  48. Y. F. Zheng, “Oxygen isotope fractionation in carbonate and sulfate minerals,” Geochemical Journal, vol. 33, no. 2, pp. 109–126, 1999. View at Publisher · View at Google Scholar · View at Scopus
  49. C. J. Eastoe, A. Long, and L. P. Knauth, “Stable chlorine isotopes in the Palo Duro Basin, Texas: evidence for preservation of Permian evaporite brines,” Geochimica et Cosmochimica Acta, vol. 63, no. 9, pp. 1375–1382, 1999. View at Publisher · View at Google Scholar · View at Scopus
  50. H. G. M. Eggenkamp, R. Kreulen, and A. F. Koster Van Groos, “Chlorine stable isotope fractionation in evaporites,” Geochimica et Cosmochimica Acta, vol. 59, no. 24, pp. 5169–5175, 1995. View at Publisher · View at Google Scholar · View at Scopus
  51. J. C. Fontes and J. M. Matray, “Geochemistry and origin of formation brines from the Paris Basin, France: 1. Brines associated with Triassic salts,” Chemical Geology, vol. 109, no. 1-4, pp. 149–175, 1993. View at Publisher · View at Google Scholar · View at Scopus
  52. P. Martz, J. Mercadier, M. Cathelineau et al., “Formation of U-rich mineralizing fluids through basinal brine migration within basement-hosted shear zones: a large-scale study of the fluid chemistry around the unconformity-related Cigar Lake U deposit (Saskatchewan, Canada),” Chemical Geology, vol. 508, pp. 116–143, 2018. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Richard, D. A. Banks, J. Mercadier, M. C. Boiron, M. Cuney, and M. Cathelineau, “An evaporated seawater origin for the ore-forming brines in unconformity-related uranium deposits (Athabasca Basin, Canada): Cl/Br and δ37Cl analysis of fluid inclusions,” Geochimica et Cosmochimica Acta, vol. 75, no. 10, pp. 2792–2810, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. P. D. Bons, T. Fusswinkel, E. Gomez-Rivas, G. Markl, T. Wagner, and B. Walter, “Fluid mixing from below in unconformity-related hydrothermal ore deposits,” Geology, vol. 42, no. 12, pp. 1035–984 1038, 2014. View at Publisher · View at Google Scholar · View at Scopus
  55. B. F. Walter, M. Burisch, and G. Markl, “Long‐term chemical evolution and modification of continental basement brines – a field study from the Schwarzwald, SW Germany,” Geofluids, vol. 16, no. 3, 623 pages, 2016. View at Publisher · View at Google Scholar · View at Scopus
  56. W. Holser, “Chapter 9. Trace elements and isotopes in evaporites,” in Marine Minerals, R. G. Burns, Ed., vol. 6 of Reviews in Mineralogy, pp. 295–346, De Gruyter, Berlin, Boston, 1979. View at Publisher · View at Google Scholar
  57. L. P. Knauth and M. A. Beeunas, “Isotope geochemistry of fluid inclusions in Permian halite with implications for the isotopic history of ocean water and the origin of saline formation waters,” Geochimica et Cosmochimica Acta, vol. 50, no. 3, pp. 419–433, 1986. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Richard, P. Boulvais, J. Mercadier et al., “From evaporated seawater to uranium-mineralizing brines: isotopic and trace element study of quartz–dolomite veins in the Athabasca system,” Geochimica et Cosmochimica Acta, vol. 113, pp. 38–59, 2013. View at Publisher · View at Google Scholar · View at Scopus
  59. Y.-F. Zheng, “Calculation of oxygen isotope fractionation in hydroxyl-bearing silicates,” Earth and Planetary Science Letters, vol. 120, no. 3-4, pp. 247–263, 1993. View at Publisher · View at Google Scholar · View at Scopus
  60. P. J. Saccocia, J. S. Seewald, and W. C. Shanks Iii, “Oxygen and hydrogen isotope fractionation in serpentine–water and talc–water systems from 250 to 450 °C, 50 MPa,” Geochimica et Cosmochimica Acta, vol. 73, no. 22, pp. 6789–6804, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. S. M. F. Sheppard, “Stable isotope variations in natural waters,” in Stable Isotopes in High Temperature Geologic Processes, J. W. Valley, H. P. Taylor, and J. R. O’Neil, Eds., vol. 16 of Review in Mineralogy and Geochemistry, pp. 319–372, 1986. View at Google Scholar
  62. H. G. M. Eggenkamp, The Geochemistry of Stable Chlorine and Bromine Isotopes, Springer, 2014. View at Publisher · View at Google Scholar · View at Scopus
  63. Y. Wan, X. Wang, I.-M. Chou, W. Hu, Y. Zhang, and X. Wang, “An experimental study of the formation of talc through CaMg(CO3)2–SiO2–H2O interaction at 100-200°C and vapor-saturation pressures,” Geofluids, vol. 2017, Article ID 3942826, 14 pages, 2017. View at Publisher · View at Google Scholar · View at Scopus
  64. Y. Matsuhisa, J. R. Goldsmith, and R. N. Clayton, “Oxygen isotopic fractionation in the system quartz-albite-anorthite-water,” Geochimica et Cosmochimica Acta, vol. 43, no. 7, pp. 1131–1140, 1979. View at Publisher · View at Google Scholar · View at Scopus
  65. Z. D. Sharp, J. A. Gibbons, O. Maltsev et al., “A calibration of the triple oxygen isotope fractionation in the SiO2–H2O system and applications to natural samples,” Geochimica et Cosmochimica Acta, vol. 186, pp. 105–119, 2016. View at Publisher · View at Google Scholar · View at Scopus
  66. Z. D. Sharp and D. L. Kirschner, “Quartz-calcite oxygen isotope thermometry: a calibration based on natural isotopic variations,” Geochimica et Cosmochimica Acta, vol. 58, no. 20, pp. 4491–4501, 1994. View at Publisher · View at Google Scholar · View at Scopus
  67. Y. Shiro and H. Sakai, “Calculation of the reduced partition function ratios of α-, β-quartzs and calcite,” Bulletin of the Chemical Society of Japan, vol. 45, no. 8, pp. 2355–2359, 1972. View at Publisher · View at Google Scholar
  68. L.-G. Zhang, J.-X. Liu, H. B. Zhou, and Z.-S. Chen, “Oxygen isotope fractionation in the quartz-water-salt system,” Economic Geology, vol. 84, no. 6, pp. 1643–1650, 1989. View at Publisher · View at Google Scholar · View at Scopus
  69. S. I. Golyshev, N. L. Padalko, and S. A. Pechenkin, “Fractionation of stable oxygen and carbon isotopes in carbonate systems,” Geochemistry International, vol. 18, pp. 85–99, 1981. View at Google Scholar
  70. G. X. Hu and R. N. Clayton, “Oxygen isotope salt effects at high pressure and high temperature and the calibration of oxygen isotope geothermometers,” Geochimica et Cosmochimica Acta, vol. 67, no. 17, pp. 3227–3246, 2003. View at Publisher · View at Google Scholar · View at Scopus
  71. J. Horita, “Oxygen and carbon isotope fractionation in the system dolomite–water–CO2 to elevated temperatures,” Geochimica et Cosmochimica Acta, vol. 129, pp. 111–124, 2014. View at Publisher · View at Google Scholar · View at Scopus
  72. J. R. O'Neil, R. N. Clayton, and T. K. Mayeda, “Oxygen isotope fractionation in divalent metal carbonates,” The Journal of Chemical Physics, vol. 51, no. 12, pp. 5547–5558, 1969, NOTE: the equations are recalculated by Freidman and O’Neil (1977) to account for a different value of the H2O-CO2 fractionation. View at Publisher · View at Google Scholar · View at Scopus
  73. S.-T. Kim and J. R. O'Neil, “Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates,” Geochimica et Cosmochimica Acta, vol. 61, no. 16, pp. 3461–3475, 1997. View at Publisher · View at Google Scholar · View at Scopus
  74. R. N. Clayton and S. W. Keiffer, “Oxygen isotopic thermometer calibrations,” in Stable Isotope Geochemistry: A Tribute to Samuel Epstein, H. P. Taylor, J. R. O'Neil, and I. R. Kaplan, Eds., pp. 3–10, The Geochemical Society, 1991, Special Publication no.3. View at Google Scholar
  75. M. Cathelineau, M.-C. Boiron, S. Fourcade et al., “A major Late Jurassic fluid event at the basin/basement unconformity in western France: 40Ar/39Ar and K–Ar dating, fluid chemistry, and related geodynamic context,” Chemical Geology, vol. 322-323, pp. 99–120, 2012. View at Publisher · View at Google Scholar · View at Scopus
  76. C. De Las Cuevas, “Pore structure characterization in rock salt,” Engineering Geology, vol. 47, no. 1-2, pp. 17–30, 1997. View at Publisher · View at Google Scholar
  77. R. Sieland, “Hydraulic investigations of the Salar de Uyuni, Bolivia,” Freiberg Online Geology, vol. 37, p. 208, 2014. View at Google Scholar
  78. N. Thiemeyer, M. Pusch, J. Hammer, and G. Zulauf, “Quantification and 3D visualisation of pore space in Gorleben rock salt: constraints from CT imaging and microfabrics Quantifizierung und 3D-Visualisierung des Porenraumes in Gorleben-Steinsalz: Ergebnisse computertomografischer und mikrostruktureller Untersuchungen,” Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, vol. 165, no. 1, pp. 15–25, 2014. View at Publisher · View at Google Scholar · View at Scopus
  79. Y. Lagabrielle, P. Labaume, and M. de Saint Blanquat, “Mantle exhumation, crustal denudation, and gravity tectonics during Cretaceous rifting in the Pyrenean realm (SW Europe): insights from the geological setting of the lherzolite bodies,” Tectonics, vol. 29, no. 4, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. I. Stober and K. Bucher, “Fluid sinks within the earth’s crust,” Geofluids, vol. 4, no. 2, 151 pages, 2004. View at Publisher · View at Google Scholar · View at Scopus
  81. V. Scribano, S. Carbone, F. C. Manuella, M. Hovland, H. Rueslatten, and H.-K. Johnsen, “Origin of salt giants in abyssal serpentinite systems,” International Journal of Earth Sciences, vol. 106, no. 7, pp. 2595–2608, 2017. View at Publisher · View at Google Scholar · View at Scopus
  82. V. H. G. Pinto, G. Manatschal, A. M. Karpoff, and A. Viana, “Tracing mantle‐reacted fluids in magma‐poor rifted margins: the example of Alpine Tethyan rifted margins,” Geochemistry, Geophysics, Geosystems, vol. 16, no. 9, pp. 3271–3308, 2015. View at Publisher · View at Google Scholar · View at Scopus
  83. B. Corre, P. Boulvais, M.-C. Boiron, Y. Lagabrielle, L. Marasi, and C. Clerc, “Fluid circulations in response to mantle exhumation at the passive margin setting in the North Pyrenean Zone, France,” Mineralogy and Petrology, vol. 112, no. 5, pp. 647–670, 2018. View at Publisher · View at Google Scholar · View at Scopus
  84. E. C. Pope, D. K. Bird, and M. T. Rosing, “Isotope composition and volume of Earth’s early oceans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 12, pp. 4371–4376, 2012. View at Publisher · View at Google Scholar · View at Scopus
  85. M. Bonifacie, V. Busigny, C. Mével et al., “Chlorine isotopic composition in seafloor serpentinites and high-pressure metaperidotites. Insights into oceanic serpentinization and subduction processes,” Geochemica et Cosmochimica Acta, vol. 72, no. 1, pp. 126–139, 2008. View at Publisher · View at Google Scholar · View at Scopus
  86. J. D. Barnes and M. Cisneros, “Mineralogical control on the chlorine isotope composition of altered oceanic crust,” Chemical Geology, vol. 326-327, pp. 51–60, 2012. View at Publisher · View at Google Scholar · View at Scopus
  87. J. D. Barnes and Z. D. Sharp, “A chlorine isotope study of DSDP/ODP serpentinized ultramafic rocks: insights into the serpentinization process,” Chemical Geology, vol. 228, no. 4, pp. 246–265, 2006. View at Publisher · View at Google Scholar · View at Scopus
  88. B. Ransom, A. J. Spivack, and M. Kastner, “Stable Cl isotopes in subduction-zone pore waters: implications for fluid-rock reactions and the cycling of chlorine,” Geology, vol. 23, no. 8, pp. 715–718, 1995. View at Publisher · View at Google Scholar
  89. A. J. Spivack, M. Kastner, and B. Ransom, “Elemental and isotopic chloride geochemistry and fluid flow in the Nankai Trough,” Geophysical Research Letters, vol. 29, no. 14, 2002. View at Publisher · View at Google Scholar
  90. M. A. Stewart and A. J. Spivack, “The stable-chlorine isotope compositions of natural and anthropogenic materials,” Reviews in Mineralogy & Geochemistry, vol. 55, no. 1, pp. 231–254, 2004. View at Publisher · View at Google Scholar · View at Scopus
  91. A. Jambon, B. Duruelle, G. Dreibus, and F. Pineau, “Chlorine and bromine abundance in MORB: the contrasting behaviour of the Mid-Atlantic Ridge and East Pacific Rise and implications for chlorine geodynamic cycle,” Earth and Planetary Science Letters, vol. 126, pp. 101–117, 1995. View at Publisher · View at Google Scholar · View at Scopus
  92. P. J. Michael and W. C. Cornell, “Influence of spreading rate and magma supply on crystallization and assimilation beneath mid‐ocean ridges: evidence from chlorine and major element chemistry of mid‐ocean ridge basalts,” Journal of Geophysical Research: Solid Earth, vol. 103, no. B8, pp. 18325–18356, 1998. View at Publisher · View at Google Scholar
  93. C. Mével, “Serpentinization of abyssal peridotites at mid-ocean ridges,” Comptes Rendus Geoscience, vol. 335, no. 10-11, pp. 825–852, 2003. View at Publisher · View at Google Scholar · View at Scopus
  94. B. Malvoisin, “Mass transfer in the oceanic lithosphere: serpentinization is not isochemical,” Earth and Planetary Science Letters, vol. 430, pp. 75–85, 2015. View at Publisher · View at Google Scholar · View at Scopus
  95. V. H. Pinto, Linking tectonic evolution with fluid history in hyperextended rifted margins: examples from the fossil Alpine and Pyrenean rift systems, and the present-day Iberia rifted margin, [Ph. D tthesis], Université de Strasbourg, 2014.
  96. J. E. Snow and H. J. B. Dick, “Pervasive magnesium loss by marine weathering of peridotite,” Geochimica et Cosmochimica Acta, vol. 59, no. 20, pp. 4219–4235, 1995. View at Publisher · View at Google Scholar · View at Scopus