Table of Contents Author Guidelines Submit a Manuscript
Genetics Research International
Volume 2011, Article ID 206290, 7 pages
http://dx.doi.org/10.4061/2011/206290
Review Article

The Transition of Poised RNA Polymerase II to an Actively Elongating State Is a “Complex” Affair

Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA

Received 24 June 2011; Accepted 31 July 2011

Academic Editor: Sebastián Chávez

Copyright © 2011 Marie N. Yearling et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. S. Gilmour and J. T. Lis, “RNA polymerase II interacts with the promoter region of the noninduced hsp70 gene in Drosophila melanogaster cells,” Molecular and Cellular Biology, vol. 6, no. 11, pp. 3984–3989, 1986. View at Google Scholar · View at Scopus
  2. T. H. Kim, L. O. Barrera, M. Zheng et al., “A high-resolution map of active promoters in the human genome,” Nature, vol. 436, no. 7052, pp. 876–880, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. M. G. Guenther, S. S. Levine, L. A. Boyer, R. Jaenisch, and R. A. Young, “A chromatin landmark and transcription initiation at most promoters in human cells,” Cell, vol. 130, no. 1, pp. 77–88, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. G. W. Muse, D. A. Gilchrist, S. Nechaev et al., “RNA polymerase is poised for activation across the genome,” Nature Genetics, vol. 39, no. 12, pp. 1507–1511, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. I. M. Min, J. J. Waterfall, L. J. Core, R. J. Munroe, J. Schimenti, and J. T. Lis, “Regulating RNA polymerase pausing and transcription elongation in embryonic stem cells,” Genes and Development, vol. 25, no. 7, pp. 742–754, 2011. View at Publisher · View at Google Scholar
  6. J. Zeitlinger, A. Stark, M. Kellis et al., “RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo,” Nature Genetics, vol. 39, no. 12, pp. 1512–1516, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. R. N. Saha, E. M. Wissink, E. R. Bailey et al., “Rapid activity-induced transcription of Arc and other IEGs relies on poised RNA polymerase II,” Nature Neuroscience, vol. 14, no. 7, pp. 848–856, 2011. View at Publisher · View at Google Scholar
  8. L. A. Selth, S. Sigurdsson, and J. Q. Svejstrup, “Transcript elongation by RNA polymerase II,” Annual Review of Biochemistry, vol. 79, pp. 271–293, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Levine, “Paused RNA polymerase II as a developmental checkpoint,” Cell, vol. 145, no. 4, pp. 502–511, 2011. View at Publisher · View at Google Scholar
  10. S. Nechaev and K. Adelman, “Pol II waiting in the starting gates: regulating the transition from transcription initiation into productive elongation,” Biochimica et Biophysica Acta, vol. 1809, no. 1, pp. 34–45, 2011. View at Publisher · View at Google Scholar
  11. M. Radonjic, J. C. Andrau, P. Lijnzaad et al., “Genome-wide analyses reveal RNA polymerase II located upstream of genes poised for rapid response upon S. cerevisiae stationary phase exit,” Molecular Cell, vol. 18, no. 2, pp. 171–183, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. S. J. Zanton and B. F. Pugh, “Full and partial genome-wide assembly and disassembly of the yeast transcription machinery in response to heat shock,” Genes and Development, vol. 20, no. 16, pp. 2250–2265, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. V. Pelechano, S. Chávez, and J. E. Pérez-Ortín, “A complete set of nascent transcription rates for yeast genes,” PLoS ONE, vol. 5, no. 11, Article ID e15442, 2010. View at Publisher · View at Google Scholar
  14. B. J. Venters and B. F. Pugh, “A canonical promoter organization of the transcription machinery and its regulators in the Saccharomyces genome,” Genome Research, vol. 19, no. 3, pp. 360–371, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. L. S. Churchman and J. S. Weissman, “Nascent transcript sequencing visualizes transcription at nucleotide resolution,” Nature, vol. 469, no. 7330, pp. 368–373, 2011. View at Publisher · View at Google Scholar
  16. V. Pelechano, S. Jimeno-González, A. Rodríguez-Gil, J. García-Martínez, J. E. Pérez-Ortín, and S. Chávez, “Regulon-specific control of transcription elongation across the yeast genome,” PLoS Genetics, vol. 5, no. 8, Article ID e1000614, 2009. View at Publisher · View at Google Scholar
  17. C. Martens, B. Krett, and P. J. Laybourn, “RNA polymerase II and TBP occupy the repressed CYC1 promoter,” Molecular Microbiology, vol. 40, no. 4, pp. 1009–1019, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. F. Sherman, J. W. Stewart, E. Margoliash, J. Parker, and W. Campbell, “The structural gene for yeast cytochrome C,” Proceedings of the National Academy of Sciences of the United States of America, vol. 55, no. 6, pp. 1498–1504, 1966. View at Google Scholar · View at Scopus
  19. L. Guarente and T. Mason, “Heme regulates transcription of the CYC1 gene of S. cerevisiae via an upstream activation site,” Cell, vol. 32, no. 4, pp. 1279–1286, 1983. View at Google Scholar · View at Scopus
  20. L. Guarente, B. Lalonde, P. Gifford, and E. Alani, “Distinctly regulated tandem upstream activation sites mediate catabolite repression of the CYC1 gene of S. cerevisiae,” Cell, vol. 36, no. 2, pp. 503–511, 1984. View at Google Scholar · View at Scopus
  21. L. Kuras and K. Struhl, “Binding of TBP to promoters in vivo is stimulated by activators and requires Pol II holoenzyme,” Nature, vol. 399, no. 6736, pp. 609–613, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. S. K. Lee, A. G. L. Fletcher, L. Zhang, X. Chen, J. A. Fischbeck, and L. A. Stargell, “Activation of a poised RNAPII-dependent promoter requires both SAGA and mediator,” Genetics, vol. 184, no. 3, pp. 659–672, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Zhang, A. G. L. Fletcher, V. Cheung, F. Winston, and L. A. Stargell, “Spn1 regulates the recruitment of Spt6 and the Swi/Snf complex during transcriptional activation by RNA polymerase II,” Molecular and Cellular Biology, vol. 28, no. 4, pp. 1393–1403, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Komarnitsky, E. J. Cho, and S. Buratowski, “Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription,” Genes and Development, vol. 14, no. 19, pp. 2452–2460, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Cheng and P. A. Sharp, “RNA polymerase II accumulation in the promoter-proximal region of the dihydrofolate reductase and γ-actin genes,” Molecular and Cellular Biology, vol. 23, no. 6, pp. 1961–1967, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. W. J. Feaver, O. Gileadi, Y. Li, and R. D. Kornberg, “CTD kinase associated with yeast RNA polymerase II initiation factor b,” Cell, vol. 67, no. 6, pp. 1223–1230, 1991. View at Google Scholar · View at Scopus
  27. H. Lu, L. Zawel, L. Fisher, J. M. Egly, and D. Reinberg, “Human general transcription factor IIH phosphorylates the C-terminal domain of RNA polymerase II,” Nature, vol. 358, no. 6388, pp. 641–645, 1992. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Serizawa, R. C. Conaway, and J. W. Conaway, “A carboxyl-terminal-domain kinase associated with RNA polymerase II transcription factor d from rat liver,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 16, pp. 7476–7480, 1992. View at Google Scholar · View at Scopus
  29. H. Serizawa, J. W. Conaway, and R. C. Conaway, “Phosphorylation of C-terminal domain of RNA polymerase II is not required in basal transcription,” Nature, vol. 363, no. 6427, pp. 371–374, 1993. View at Publisher · View at Google Scholar · View at Scopus
  30. L. Schaeffer, R. Roy, S. Humbert et al., “DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor,” Science, vol. 259, no. 5104, pp. 58–63, 1993. View at Google Scholar · View at Scopus
  31. M. Johnston, “Feasting, fasting and fermenting: glucose sensing in yeast and other cells,” Trends in Genetics, vol. 15, no. 1, pp. 29–33, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. E. Koutelou, C. L. Hirsch, and S. Y. R. Dent, “Multiple faces of the SAGA complex,” Current Opinion in Cell Biology, vol. 22, no. 3, pp. 374–382, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Rodriguez-Navarro, “Insights into SAGA function during gene expression,” EMBO Reports, vol. 10, no. 8, pp. 843–850, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. A. M. Dudley, C. Rougeulle, and F. Winston, “The Spt components of SAGA facilitate TBP binding to a promoter at a post-activator-binding step in vivo,” Genes and Development, vol. 13, no. 22, pp. 2940–2945, 1999. View at Publisher · View at Google Scholar · View at Scopus
  35. R. Belotserkovskaya, D. E. Sterner, M. Deng, M. H. Sayre, P. M. Lieberman, and S. L. Berger, “Inhibition of TATA-binding protein function by SAGA subunits Spt3 and Spt8 at Gcn4-activated promoters,” Molecular and Cellular Biology, vol. 20, no. 2, pp. 634–647, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. S. R. Bhaumik and M. R. Green, “SAGA is an essential in vivo target of the yeast acidic activator Gal4p,” Genes and Development, vol. 15, no. 15, pp. 1935–1945, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. E. Larschan and F. Winston, “The S. cerevisiae SAGA complex functions in vivo as a coactivator for transcriptional activation by Gal4,” Genes and Development, vol. 15, no. 15, pp. 1946–1956, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. H. Qiu, C. Hu, F. Zhang et al., “Interdependent recruitment of SAGA and Srb mediator by transcriptional activator Gcn4p,” Molecular and Cellular Biology, vol. 25, no. 9, pp. 3461–3474, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. J. E. Brownell, J. Zhou, T. Ranalli et al., “Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation,” Cell, vol. 84, no. 6, pp. 843–851, 1996. View at Publisher · View at Google Scholar · View at Scopus
  40. P. A. Grant, L. Duggan, J. Cote et al., “Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an ada complex and the saga (spt/ada) complex,” Genes and Development, vol. 11, no. 13, pp. 1640–1650, 1997. View at Google Scholar · View at Scopus
  41. P. A. Grant, D. Schieltz, M. G. Pray-Grant et al., “A subset of TAF(II)s are integral components of the SAGA complex required for nucleosome acetylation and transcriptional stimulation,” Cell, vol. 94, no. 1, pp. 45–53, 1998. View at Publisher · View at Google Scholar · View at Scopus
  42. R. T. Utley, K. Ikeda, P. A. Grant et al., “Transcriptional activators direct histone acetyltransferase complexes to nucleosomes,” Nature, vol. 394, no. 6692, pp. 498–502, 1998. View at Publisher · View at Google Scholar · View at Scopus
  43. C. Desmoucelles, B. Pinson, C. Saint-Marc, and B. Daignan-Fornier, “Screening the yeast “Disruptome” for mutants affecting resistance to the immunosuppressive drug, mycophenolic acid,” Journal of Biological Chemistry, vol. 277, no. 30, pp. 27036–27044, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. C. K. Govind, F. Zhang, H. Qiu, K. Hofmeyer, and A. G. Hinnebusch, “Gcn5 promotes acetylation, eviction, and methylation of nucleosomes in transcribed coding regions,” Molecular Cell, vol. 25, no. 1, pp. 31–42, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Wyce, K. W. Henry, S. L. Berger, Verdin, Gu, and Yao, “H2B ubiquitylation and de-ubiquitylation in gene activation,” Novartis Foundation Symposium, vol. 259, pp. 63–73, 2004. View at Google Scholar · View at Scopus
  46. P. Pascual-García, C. K. Govind, E. Queralt et al., “Sus1 is recruited to coding regions and functions during transcription elongation in association with SAGA and TREX2,” Genes and Development, vol. 22, no. 20, pp. 2811–2822, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. V. M. Weake, J. O. Dyer, C. Seidel et al., “Post-transcription initiation function of the ubiquitous SAGA complex in tissue-specific gene activation,” Genes & Development, vol. 25, pp. 1499–1509, 2011. View at Google Scholar
  48. M. Morillo-Huesca, M. Vanti, and S. Chávez, “A simple in vivo assay for measuring the efficiency of gene length-dependent processes in yeast mRNA biogenesis,” FEBS Journal, vol. 273, no. 4, pp. 756–769, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Sanso, I. Vargas-Perez, L. Quintales, F. Antequera, J. Ayte, and E. Hidalgo, “Gcn5 facilitates Pol II progression, rather than recruitment to nucleosome-depleted stress promoters, in Schizosaccharomyces pombe,” Nucleic Acids Research, vol. 39, no. 15, pp. 6369–6379.
  50. K. W. Henry, A. Wyce, W. S. Lo et al., “Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8,” Genes and Development, vol. 17, no. 21, pp. 2648–2663, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. J. A. Daniel, M. S. Torok, Z. W. Sun et al., “Deubiquitination of histone H2B by a yeast acetyltransferase complex regulates transcription,” Journal of Biological Chemistry, vol. 279, no. 3, pp. 1867–1871, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. H. M. Bourbon, “Comparative genomics supports a deep evolutionary origin for the large, four-module transcriptional mediator complex,” Nucleic Acids Research, vol. 36, no. 12, pp. 3993–4008, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. K. D. Meyer, S. C. Lin, C. Bernecky, Y. Gao, and D. J. Taatjes, “P53 activates transcription by directing structural shifts in Mediator,” Nature Structural and Molecular Biology, vol. 17, no. 6, pp. 753–760, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. J. A. Davis, Y. Takagi, R. D. Kornberg, and F. J. Asturias, “Structure of the yeast RNA polymerase II holoenzyme: mediator conformation and polymerase interaction,” Molecular Cell, vol. 10, no. 2, pp. 409–415, 2002. View at Publisher · View at Google Scholar · View at Scopus
  55. G. Cai, T. Imasaki, K. Yamada, F. Cardelli, Y. Takagi, and F. J. Asturias, “Mediator Head module structure and functional interactions,” Nature Structural and Molecular Biology, vol. 17, no. 3, pp. 273–279, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. H. Sakurai and T. Fukasawa, “Functional connections between mediator components and general transcription factors of Saccharomyces cerevisiae,” Journal of Biological Chemistry, vol. 275, no. 47, pp. 37251–37256, 2000. View at Publisher · View at Google Scholar · View at Scopus
  57. C. Esnault, Y. Ghavi-Helm, S. Brun et al., “Mediator-dependent recruitment of TFIIH modules in preinitiation complex,” Molecular Cell, vol. 31, no. 3, pp. 337–346, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. R. K. Biddick, G. L. Law, K. K. B. Chin, and E. T. Young, “The transcriptional coactivators SAGA, SWI/SNF, and mediator make distinct contributions to activation of glucose-repressed genes,” Journal of Biological Chemistry, vol. 283, no. 48, pp. 33101–33109, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. Y. J. Kim, S. Bjorklund, Y. Li, M. H. Sayre, and R. D. Kornberg, “A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II,” Cell, vol. 77, no. 4, pp. 599–608, 1994. View at Publisher · View at Google Scholar · View at Scopus
  60. G. Wang, M. A. Balamotis, J. L. Stevens, Y. Yamaguchi, H. Handa, and A. J. Berk, “Mediator requirement for both recruitment and postrecruitment steps in transcription initiation,” Molecular Cell, vol. 17, no. 5, pp. 683–694, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. J. Soutourina, S. Wydau, Y. Ambroise, C. Boschiero, and M. Werner, “Direct interaction of RNA polymerase II and mediator required for transcription in vivo,” Science, vol. 331, no. 6023, pp. 1451–1454, 2011. View at Publisher · View at Google Scholar
  62. J. A. Fischbeck, S. M. Kraemer, and L. A. Stargell, “SPN1, a conserved gene identified by suppression of a postrecruitment-defective yeast TATA-binding protein mutant,” Genetics, vol. 162, no. 4, pp. 1605–1616, 2002. View at Google Scholar · View at Scopus
  63. V. Pujari, C. A. Radebaugh, J. V. Chodaparambil et al., “The transcription factor Spn1 regulates gene expression via a highly conserved novel structural motif,” Journal of Molecular Biology, vol. 404, no. 1, pp. 1–15, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. D. L. Lindstrom, S. L. Squazzo, N. Muster et al., “Dual roles for Spt5 in pre-mRNA processing and transcription elongation revealed by identification of Spt5-associated proteins,” Molecular and Cellular Biology, vol. 23, no. 4, pp. 1368–1378, 2003. View at Publisher · View at Google Scholar · View at Scopus
  65. N. J. Krogan, M. Kim, S. H. Ahn et al., “RNA polymerase II elongation factors of Saccharomyces cerevisiae: a targeted proteomics approach,” Molecular and Cellular Biology, vol. 22, no. 20, pp. 6979–6992, 2002. View at Publisher · View at Google Scholar · View at Scopus
  66. A. C. Gavin, M. Bösche, R. Krause et al., “Functional organization of the yeast proteome by systematic analysis of protein complexes,” Nature, vol. 415, no. 6868, pp. 141–147, 2002. View at Publisher · View at Google Scholar · View at Scopus
  67. S. M. Yoh, H. Cho, L. Pickle, R. M. Evans, and K. A. Jones, “The Spt6 SH2 domain binds Ser2-P RNAPII to direct Iws1-dependent mRNA splicing and export,” Genes and Development, vol. 21, no. 2, pp. 160–174, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. K. Tarassov, V. Messier, C. R. Landry et al., “An in vivo map of the yeast protein interactome,” Science, vol. 320, no. 5882, pp. 1465–1470, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. L. Li, H. Ye, H. Guo, and Y. Yin, “Arabidopsis IWS1 interacts with transcription factor BES1 and is involved in plant steroid hormone brassinosteroid regulated gene expression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 8, pp. 3918–3923, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. A. Bortvin and F. Winston, “Evidence that Spt6p controls chromatin structure by a direct interaction with histones,” Science, vol. 272, no. 5267, pp. 1473–1476, 1996. View at Google Scholar · View at Scopus
  71. C. D. Kaplan, L. Laprade, and F. Winston, “Transcription elongation factors repress transcription initiation from cryptic sites,” Science, vol. 301, no. 5636, pp. 1096–1099, 2003. View at Publisher · View at Google Scholar · View at Scopus
  72. M. W. Adkins and J. K. Tyler, “Transcriptional activators are dispensable for transcription in the absence of Spt6-mediated chromatin reassembly of promoter regions,” Molecular Cell, vol. 21, no. 3, pp. 405–416, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. S. M. Yoh, J. S. Lucas, and K. A. Jones, “The Iws1:Spt6:CTD complex controls cotranscriptional mRNA biosynthesis and HYPB/Setd2-mediated histone H3K36 methylation,” Genes and Development, vol. 22, no. 24, pp. 3422–3434, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. M. B. Ardehali, J. Yao, K. Adelman et al., “Spt6 enhances the elongation rate of RNA polymerase II in vivo,” EMBO Journal, vol. 28, no. 8, pp. 1067–1077, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. S. M. McDonald, D. Close, H. Xin, T. Formosa, and C. P. Hill, “Structure and biological importance of the Spn1-Spt6 interaction, and its regulatory role in nucleosome binding,” Molecular Cell, vol. 40, no. 5, pp. 725–735, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. I. Ivanovska, P. -É. Jacques, O. J. Rando, F. Robert, and F. Winston, “Control of chromatin structure by Spt6: different consequences in coding and regulatory regions,” Molecular and Cellular Biology, vol. 31, no. 3, pp. 531–541, 2011. View at Publisher · View at Google Scholar
  77. M. Endoh, W. Zhu, J. Hasegawa et al., “Human Spt6 stimulates transcription elongation by RNA polymerase II in vitro,” Molecular and Cellular Biology, vol. 24, no. 8, pp. 3324–3336, 2004. View at Publisher · View at Google Scholar · View at Scopus
  78. M. L. Diebold, M. Koch, E. Loeliger et al., “The structure of an Iws1/Spt6 complex reveals an interaction domain conserved in TFIIS, Elongin A and Med26,” EMBO Journal, vol. 29, no. 23, pp. 3979–3991, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. L. Neigeborn, K. Rubin, and M. Carlson, “Suppressors of SNF2 mutations restore invertase derepression and cause temperature-sensitive lethality in yeast,” Genetics, vol. 112, no. 4, pp. 741–753, 1986. View at Google Scholar · View at Scopus
  80. Y. Lorch, B. Maier-Davis, and R. D. Kornberg, “Chromatin remodeling by nucleosome disassembly in vitro,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 9, pp. 3090–3093, 2006. View at Publisher · View at Google Scholar · View at Scopus
  81. M. W. Adkins, S. K. Williams, J. Linger, and J. K. Tyler, “Chromatin disassembly from the PHO5 promoter is essential for the recruitment of the general transcription machinery and coactivators,” Molecular and Cellular Biology, vol. 27, no. 18, pp. 6372–6382, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. T. Gkikopoulos, K. M. Havas, H. Dewar, and T. Owen-Hughes, “SWI/SNF and Asf1p cooperate to displace histones during induction of the Saccharomyces cerevisiae HO promoter,” Molecular and Cellular Biology, vol. 29, no. 15, pp. 4057–4066, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. P. Korber, S. Barbaric, T. Luckenbach et al., “The histone chaperone Asf1 increases the rate of histone eviction at the yeast PHO5 and PHO8 promoters,” Journal of Biological Chemistry, vol. 281, no. 9, pp. 5539–5545, 2006. View at Publisher · View at Google Scholar · View at Scopus
  84. S. Takahata, Y. Yu, and D. J. Stillman, “FACT and Asf1 regulate nucleosome dynamics and coactivator binding at the HO promoter,” Molecular Cell, vol. 34, no. 4, pp. 405–415, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. M. A. Schwabish and K. Struhl, “The Swi/Snf complex is important for histone eviction during transcriptional activation and RNA polymerase II elongation in vivo,” Molecular and Cellular Biology, vol. 27, no. 20, pp. 6987–6995, 2007. View at Publisher · View at Google Scholar · View at Scopus
  86. S. Shivaswamy and V. R. Iyer, “Stress-dependent dynamics of global chromatin remodeling in yeast: dual role for SWI/SNF in the heat shock stress response,” Molecular and Cellular Biology, vol. 28, no. 7, pp. 2221–2234, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. S. R. Collins, K. M. Miller, N. L. Maas et al., “Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map,” Nature, vol. 446, no. 7137, pp. 806–810, 2007. View at Publisher · View at Google Scholar · View at Scopus
  88. A. Roguev, S. Bandyopadhyay, M. Zofall et al., “Conservation and rewiring of functional modules revealed by an epistasis map in fission yeast,” Science, vol. 322, no. 5900, pp. 405–410, 2008. View at Publisher · View at Google Scholar · View at Scopus
  89. L. Gao and D. S. Gross, “Sir2 silences gene transcription by targeting the transition between RNA polymerase II initiation and elongation,” Molecular and Cellular Biology, vol. 28, no. 12, pp. 3979–3994, 2008. View at Publisher · View at Google Scholar · View at Scopus
  90. A. Mayer, M. Lidschreiber, M. Siebert, K. Leike, J. Söding, and P. Cramer, “Uniform transitions of the general RNA polymerase II transcription complex,” Nature Structural and Molecular Biology, vol. 17, no. 10, pp. 1272–1278, 2010. View at Publisher · View at Google Scholar · View at Scopus
  91. L. A. Lebedeva, E. N. Nabirochkina, M. M. Kurshakova et al., “Occupancy of the Drosophila hsp70 promoter by a subset of basal transcription factors diminishes upon transcriptional activation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 50, pp. 18087–18092, 2005. View at Publisher · View at Google Scholar · View at Scopus
  92. J. M. Park, J. Werner, J. M. Kim, J. T. Lis, and Y. J. Kim, “Mediator, not holoenzyme, is directly recruited to the heat shock promoter by HSF upon heat shock,” Molecular Cell, vol. 8, no. 1, pp. 9–19, 2001. View at Publisher · View at Google Scholar · View at Scopus
  93. D. A. Gilchrist, G. Dos Santos, D. C. Fargo et al., “Pausing of RNA polymerase II disrupts DNA-specified nucleosome organization to enable precise gene regulation,” Cell, vol. 143, no. 4, pp. 540–551, 2010. View at Publisher · View at Google Scholar · View at Scopus