Table of Contents Author Guidelines Submit a Manuscript
Genetics Research International
Volume 2013, Article ID 852080, 12 pages
http://dx.doi.org/10.1155/2013/852080
Review Article

Epigenetics in Friedreich's Ataxia: Challenges and Opportunities for Therapy

Division of Biosciences, School of Health Sciences and Social Care, Brunel University London, Uxbridge UB8 3PH, UK

Received 3 October 2012; Accepted 10 January 2013

Academic Editor: Rajith N. De Silva

Copyright © 2013 Chiranjeevi Sandi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Cossée, M. Schmitt, V. Campuzano et al., “Evolution of the Friedreich's ataxia trinucleotide repeat expansion: founder effect and premutations,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 14, pp. 7452–7457, 1997. View at Google Scholar · View at Scopus
  2. V. Campuzano, L. Montermini, M. D. Moltò et al., “Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion,” Science, vol. 271, no. 5254, pp. 1423–1427, 1996. View at Google Scholar · View at Scopus
  3. M. Pandolfo, “The molecular basis of Friedreich ataxia,” Advances in Experimental Medicine and Biology, vol. 516, pp. 99–118, 2002. View at Google Scholar · View at Scopus
  4. M. Cossee, A. Durr, M. Schmitt et al., “Friedreich's ataxia: point mutations and clinical presentation of compound heterozygotes,” Annals of Neurology, vol. 45, no. 2, pp. 200–206, 1999. View at Publisher · View at Google Scholar
  5. C. Gellera, B. Castellotti, C. Mariotti et al., “Frataxin gene point mutations in Italian Friedreich ataxia patients,” Neurogenetics, vol. 8, no. 4, pp. 289–299, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. E. C. Deutsch, A. B. Santani, S. L. Perlman et al., “A rapid, noninvasive immunoassay for frataxin: utility in assessment of Friedreich ataxia,” Molecular Genetics and Metabolism, vol. 101, no. 2-3, pp. 238–245, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. M. V. Evans-Galea, L. A. Corben, J. Hasell et al., “A novel deletion-insertion mutation identified in exon 3 of FXN in two siblings with a severe Friedreich ataxia phenotype,” Neurogenetics, vol. 12, no. 4, pp. 307–313, 2011. View at Publisher · View at Google Scholar
  8. C. H. Zühlke, A. Dalski, M. Habeck et al., “Extension of the mutation spectrum in Friedreich's ataxia: detection of an exon deletion and novel missense mutations,” European Journal of Human Genetics, vol. 12, no. 11, pp. 979–982, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Anheim, L. L. Mariani, P. Calvas et al., “Exonic deletions of FXN and early-onset Friedreich ataxia,” Archives of Neurology, vol. 69, no. 7, pp. 912–916, 2012. View at Publisher · View at Google Scholar
  10. G. S. Chandok, M. P. Patel, S. M. Mirkin, and M. M. Krasilnikova, “Effects of Friedreich's ataxia GAA repeats on DNA replication in mammalian cells,” Nucleic Acids Research, vol. 40, no. 9, pp. 3964–3974, 2012. View at Publisher · View at Google Scholar
  11. N. Sakamoto, K. Ohshima, L. Montermini, M. Pandolfo, and R. D. Wells, “Sticky DNA, a self-associated complex formed at long GAA·TTC repeats in intron 1 of the frataxin gene, inhibits transcription,” Journal of Biological Chemistry, vol. 276, no. 29, pp. 27171–27177, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. V. Ezzatizadeh, R. M. Pinto, C. Sandi et al., “The mismatch repair system protects against intergenerational GAA repeat instability in a Friedreich ataxia mouse model,” Neurobiology of Disease, vol. 46, no. 1, pp. 165–171, 2012. View at Publisher · View at Google Scholar
  13. V. Campuzano, L. Montermini, Y. Lutz et al., “Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes,” Human Molecular Genetics, vol. 6, no. 11, pp. 1771–1780, 1997. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Pianese, M. Turano, M. S. Lo Casale et al., “Real time PCR quantification of frataxin mRNA in the peripheral blood leucocytes of Friedreich ataxia patients and carriers,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 75, no. 7, pp. 1061–1063, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. J. L. Bradley, J. C. Blake, S. Chamberlain, P. K. Thomas, J. M. Cooper, and A. H. V. Schapira, “Clinical, biochemical and molecular genetic correlations in Friedreich's ataxia,” Human Molecular Genetics, vol. 9, no. 2, pp. 275–282, 2000. View at Google Scholar · View at Scopus
  16. D. Waldvogel, P. van Gelderen, and M. Hallett, “Increased iron in the dentate nucleus of patients with Friedrich's ataxia,” Annals of Neurology, vol. 46, no. 1, pp. 123–125, 1999. View at Publisher · View at Google Scholar
  17. A. H. Koeppen, S. C. Michael, M. D. Knutson et al., “The dentate nucleus in Friedreich's ataxia: the role of iron-responsive proteins,” Acta Neuropathologica, vol. 114, no. 2, pp. 163–173, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. F. Foury and O. Cazzalini, “Deletion of the yeast homologue of the human gene associated with Friedreich's ataxia elicits iron accumulation in mitochondria,” FEBS Letters, vol. 411, no. 2-3, pp. 373–377, 1997. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Wong, J. Yang, P. Cavadini et al., “The Friedreich's ataxia mutation confers cellular sensitivity to oxidant stress which is rescued by chelators of iron and calcium and inhibitors of apoptosis,” Human Molecular Genetics, vol. 8, no. 3, pp. 425–430, 1999. View at Google Scholar · View at Scopus
  20. J. B. Schulz, S. Boesch, K. Bürk et al., “Diagnosis and treatment of Friedreich ataxia: a European perspective,” Nature Reviews Neurology, vol. 5, no. 4, pp. 222–234, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. E. Grabczyk, M. Mancuso, and M. C. Sammarco, “A persistent RNA·DNA hybrid formed by transcription of the Friedreich ataxia triplet repeat in live bacteria, and by T7 RNAP in vitro,” Nucleic Acids Research, vol. 35, no. 16, pp. 5351–5359, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. R. D. Wells, “DNA triplexes and Friedreich ataxia,” FASEB Journal, vol. 22, no. 6, pp. 1625–1634, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Savellev, C. Everett, T. Sharpe, Z. Webster, and R. Festenstein, “DNA triplet repeats mediate heterochromatin-protein-1-sensitive variegated gene silencing,” Nature, vol. 422, no. 6934, pp. 909–913, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Beisel and R. Paro, “Silencing chromatin: comparing modes and mechanisms,” Nature Reviews Genetics, vol. 12, no. 2, pp. 123–135, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. K. D. Robertson, “DNA methylation, methyltransferases, and cancer,” Oncogene, vol. 20, no. 24, pp. 3139–3155, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Goffin and E. Eisenhauer, “DNA methyltransferase inhibitors—state of the art,” Annals of Oncology, vol. 13, no. 11, pp. 1699–1716, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. T. H. Bestor, “The DNA methyltransferases of mammals,” Human Molecular Genetics, vol. 9, no. 16, pp. 2395–2402, 2000. View at Google Scholar · View at Scopus
  28. S. Pradhan, A. Bacolla, R. D. Wells, and R. J. Roberts, “Recombinant human DNA (cytosine-5) methyltransferase. I. Expression, purification, and comparison of novo and maintenance methylation,” Journal of Biological Chemistry, vol. 274, no. 46, pp. 33002–33010, 1999. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Beard, E. Li, and R. Jaenisch, “Loss of methylation activates Xist in somatic but not in embryonic cells,” Genes and Development, vol. 9, no. 19, pp. 2325–2334, 1995. View at Google Scholar · View at Scopus
  30. M. Okano, D. W. Bell, D. A. Haber, and E. Li, “DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development,” Cell, vol. 99, no. 3, pp. 247–257, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Watanabe, I. Suetake, T. Tada, and S. Tajima, “Stage- and cell-specific expression of Dnmt3a and Dnmt3b during embryogenesis,” Mechanisms of Development, vol. 118, no. 1-2, pp. 187–190, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. M. C. Lorincz, D. R. Dickerson, M. Schmitt, and M. Groudine, “Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells,” Nature Structural and Molecular Biology, vol. 11, no. 11, pp. 1068–1075, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. E. N. Gal-Yam, G. Egger, L. Iniguez et al., “Frequent switching of polycomb repressive marks and DNA hypermethylation in the PC3 prostate cancer cell line,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 35, pp. 12979–12984, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Schlesinger, R. Straussman, I. Keshet et al., “Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer,” Nature Genetics, vol. 39, no. 2, pp. 232–236, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. P. A. Jones, “Functions of DNA methylation: islands, start sites, gene bodies and beyond,” Nature Reviews Genetics, vol. 13, no. 7, pp. 484–492, 2012. View at Publisher · View at Google Scholar
  36. E. Greene, L. Mahishi, A. Entezam, D. Kumari, and K. Usdin, “Repeat-induced epigenetic changes in intron 1 of the frataxin gene and its consequences in Friedreich ataxia,” Nucleic Acids Research, vol. 35, no. 10, pp. 3383–3390, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. H. Sugawara, K. Iwamoto, M. Bundo et al., “Comprehensive DNA methylation analysis of human peripheral blood leukocytes and lymphoblastoid cell lines,” Epigenetics, vol. 6, no. 4, pp. 508–515, 2011. View at Publisher · View at Google Scholar
  38. S. Al-Mahdawi, R. M. Pinto, O. Ismail et al., “The Friedreich ataxia GAA repeat expansion mutation induces comparable epigenetic changes in human and transgenic mouse brain and heart tissues,” Human Molecular Genetics, vol. 17, no. 5, pp. 735–746, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. M. V. Evans-Galea, N. Carrodus, S. M. Rowley et al., “FXN methylation predicts expression and clinical outcome in Friedreich ataxia,” Annals of Neurology, vol. 71, no. 4, pp. 487–497, 2012. View at Publisher · View at Google Scholar
  40. I. Castaldo, M. Pinelli, A. Monticelli et al., “DNA methylation in intron 1 of the frataxin gene is related to GAA repeat length and age of onset in Friedreich ataxia patients,” Journal of Medical Genetics, vol. 45, no. 12, pp. 808–812, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Naumann, N. Hochstein, S. Weber, E. Fanning, and W. Doerfler, “A distinct DNA-methylation boundary in the 5′- upstream sequence of the FMR1 promoter binds nuclear proteins and is lost in fragile X syndrome,” American Journal of Human Genetics, vol. 85, no. 5, pp. 606–616, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. A. López Castel, M. Nakamori, S. Tomé et al., “Expanded CTG repeat demarcates a boundary for abnormal CpG methylation in myotonic dystrophy patient tissues,” Human Molecular Genetics, vol. 20, no. 1, pp. 1–15, 2011. View at Google Scholar · View at Scopus
  43. V. Dion, Y. Lin, L. Hubert Jr., R. A. Waterland, and J. H. Wilson, “Dnmt1 deficiency promotes CAG repeat expansion in the mouse germline,” Human Molecular Genetics, vol. 17, no. 9, pp. 1306–1317, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. R. T. Libby, K. A. Hagerman, V. V. Pineda et al., “CTCF cis-regulates trinucleotide repeat instability in an epigenetic manner: a novel basis for mutational hot spot determination,” PLoS Genetics, vol. 4, no. 11, Article ID e1000257, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. T. Kouzarides, “Chromatin modifications and their function,” Cell, vol. 128, no. 4, pp. 693–705, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. V. G. Allfrey, R. Faulkner, and A. E. Mirsky, “Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 51, pp. 786–794, 1964. View at Google Scholar · View at Scopus
  47. M. Tan, H. Luo, S. Lee et al., “Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification,” Cell, vol. 146, no. 6, pp. 1016–1028, 2011. View at Publisher · View at Google Scholar
  48. A. Razin, “CpG methylation, chromatin structure and gene silencing—a three-way connection,” EMBO Journal, vol. 17, no. 17, pp. 4905–4908, 1998. View at Publisher · View at Google Scholar · View at Scopus
  49. G. Blander and L. Guarente, “The Sir2 family of protein deacetylases,” Annual Review of Biochemistry, vol. 73, pp. 417–435, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. K. N. Bhalla, “Epigenetic and chromatin modifiers as targeted therapy of hematologic malignancies,” Journal of Clinical Oncology, vol. 23, no. 17, pp. 3971–3993, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. P. A. Marks and M. Dokmanovic, “Histone deacetylase inhibitors: discovery and development as anticancer agents,” Expert Opinion on Investigational Drugs, vol. 14, no. 12, pp. 1497–1511, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. K. B. Glaser, “HDAC inhibitors: clinical update and mechanism-based potential,” Biochemical Pharmacology, vol. 74, no. 5, pp. 659–671, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. L. N. Pan, J. Lu, and B. Huang, “HDAC inhibitors: a potential new category of anti-tumor agents,” Cellular & Molecular Immunology, vol. 4, no. 5, pp. 337–343, 2007. View at Google Scholar · View at Scopus
  54. D. H. Cho, C. P. Thienes, S. E. Mahoney, E. Analau, G. N. Filippova, and S. J. Tapscott, “Antisense transcription and heterochromatin at the DM1 CTG repeats are constrained by CTCF,” Molecular Cell, vol. 20, no. 3, pp. 483–489, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. B. Coffee, F. Zhang, S. Ceman, S. T. Warren, and D. Reines, “Histone modifications depict an aberrantly heterochromatinized FMR1 gene in fragile X syndrome,” American Journal of Human Genetics, vol. 71, no. 4, pp. 923–932, 2002. View at Google Scholar · View at Scopus
  56. D. Kumari and K. Usdin, “The distribution of repressive histone modifications on silenced FMR1 alleles provides clues to the mechanism of gene silencing in fragile X syndrome,” Human Molecular Genetics, vol. 19, no. 23, pp. 4634–4642, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. L. E. Kernochan, M. L. Russo, N. S. Woodling et al., “The role of histone acetylation in SMN gene expression,” Human Molecular Genetics, vol. 14, no. 9, pp. 1171–1182, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. N. Sakamoto, P. D. Chastain, P. Parniewski et al., “Sticky DNA: self-association properties of long GAA·TTC repeats in R·R·Y triplex structures from Friedreich's ataxia,” Molecular Cell, vol. 3, no. 4, pp. 465–475, 1999. View at Publisher · View at Google Scholar · View at Scopus
  59. N. Sakamoto, J. E. Larson, R. R. Iyer, L. Montermini, M. Pandolfo, and R. D. Wells, “GGA·TCC-interrupted triplets in long GAA·TTC repeats inhibit the formation of triplex and sticky DNA structures, alleviate transcription inhibition, and reduce genetic instabilities,” Journal of Biological Chemistry, vol. 276, no. 29, pp. 27178–27187, 2001. View at Publisher · View at Google Scholar · View at Scopus
  60. D. Herman, K. Jenssen, R. Burnett, E. Soragni, S. L. Perlman, and J. M. Gottesfeld, “Histone deacetylase inhibitors reverse gene silencing in Friedreich's ataxia,” Nature Chemical Biology, vol. 2, no. 10, pp. 551–558, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. T. Punga and M. Bühler, “Long intronic GAA repeats causing Friedreich ataxia impede transcription elongation,” EMBO Molecular Medicine, vol. 2, no. 4, pp. 120–129, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Rai, E. Soragni, K. Jenssen et al., “HDAC inihibitors correct frataxin deficiency in a Friedreich ataxia mouse model,” PLoS One, vol. 3, no. 4, Article ID e1958, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. I. De Biase, Y. K. Chutake, P. M. Rindler, and S. I. Bidichandani, “Epigenetic silencing in Friedreich ataxia is associated with depletion of CTCF (CCCTC-binding factor) and antisense transcription,” PLoS One, vol. 4, no. 11, Article ID e7914, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. C. Martin and Y. Zhang, “The diverse functions of histone lysine methylation,” Nature Reviews Molecular Cell Biology, vol. 6, no. 11, pp. 838–849, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. N. Kourmouli, P. Jeppesen, S. Mahadevhaiah et al., “Heterochromatin and tri-methylated lysine 20 of histone H4 in animals,” Journal of Cell Science, vol. 117, no. 12, pp. 2491–2501, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. T. Jenuwein, “The epigenetic magic of histone lysine methylation: delivered on 6 July 2005 at the 30th FEBS Congress in Budapest, Hungary,” FEBS Journal, vol. 273, no. 14, pp. 3121–3135, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. R. J. Sims III, K. Nishioka, and D. Reinberg, “Histone lysine methylation: a signature for chromatin function,” Trends in Genetics, vol. 19, no. 11, pp. 629–639, 2003. View at Publisher · View at Google Scholar · View at Scopus
  68. E. Kim, M. Napierala, and S. Y. Dent, “Hyperexpansion of GAA repeats affects post-initiation steps of FXN transcription in Friedreich's ataxia,” Nucleic Acids Research, vol. 39, no. 19, pp. 8366–8377, 2011. View at Publisher · View at Google Scholar
  69. D. Kumari, R. E. Biacsi, and K. Usdin, “Repeat expansion affects both transcription initiation and elongation in Friedreich ataxia cells,” Journal of Biological Chemistry, vol. 286, no. 6, pp. 4209–4215, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. F. Acquaviva, I. Castaldo, A. Filla et al., “Recombinant human erythropoietin increases frataxin protein expression without increasing mRNA expression,” Cerebellum, vol. 7, no. 3, pp. 360–365, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. C. Sandi, R. M. Pinto, S. Al-Mahdawi et al., “Prolonged treatment with pimelic o-aminobenzamide HDAC inhibitors ameliorates the disease phenotype of a Friedreich ataxia mouse model,” Neurobiology of Disease, vol. 42, no. 3, pp. 496–505, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. B. E. Bernstein, E. Birney, I. Dunham et al., “An integrated encyclopedia of DNA elements in the human genome,” Nature, vol. 489, no. 7414, pp. 57–74, 2012. View at Google Scholar
  73. J. Harrow, A. Frankish, J. M. Gonzalez et al., “GENCODE: the reference human genome annotation for The ENCODE Project,” Genome Research, vol. 22, no. 9, pp. 1760–1774, 2012. View at Publisher · View at Google Scholar
  74. P. Qi and X. Du, “The long non-coding RNAs, a new cancer diagnostic and therapeutic gold mine,” Modern Pathology, vol. 26, no. 2, pp. 155–165, 2013. View at Publisher · View at Google Scholar
  75. C. P. Ponting and T. G. Belgard, “Transcribed dark matter: meaning or myth?” Human Molecular Genetics, vol. 19, no. R2, pp. R162–R168, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. S. Djebali, C. A. Davis, A. Merkel et al., “Landscape of transcription in human cells,” Nature, vol. 489, no. 7414, pp. 101–108, 2012. View at Publisher · View at Google Scholar
  77. G. Lavorgna, D. Dahary, B. Lehner, R. Sorek, C. M. Sanderson, and G. Casari, “In search of antisense,” Trends in Biochemical Sciences, vol. 29, no. 2, pp. 88–94, 2004. View at Publisher · View at Google Scholar · View at Scopus
  78. A. E. Pasquinelli and G. Ruvkun, “Control of developmental timing by microRNAs and their targets,” Annual Review of Cell and Developmental Biology, vol. 18, pp. 495–513, 2002. View at Publisher · View at Google Scholar · View at Scopus
  79. K. Delaval and R. Feil, “Epigenetic regulation of mammalian genomic imprinting,” Current Opinion in Genetics and Development, vol. 14, no. 2, pp. 188–195, 2004. View at Publisher · View at Google Scholar · View at Scopus
  80. K. V. Morris, S. Santoso, A. M. Turner, C. Pastori, and P. G. Hawkins, “Bidirectional transcription directs both transcriptional gene activation and suppression in human cells,” PLoS Genetics, vol. 4, no. 11, Article ID e1000258, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. S. H. Munroe and M. A. Lazar, “Inhibition of c-erbA mRNA splicing by a naturally occurring antisense RNA,” Journal of Biological Chemistry, vol. 266, no. 33, pp. 22083–22086, 1991. View at Google Scholar · View at Scopus
  82. D. W. Chung, D. D. Rudnicki, L. Yu, and L. Margolis, “A natural antisense transcript at the Huntington's disease repeat locus regulates HTT expression,” Human Molecular Genetics, vol. 20, no. 17, pp. 3467–3477, 2011. View at Publisher · View at Google Scholar
  83. A. M. Khalil, M. A. Faghihi, F. Modarresi, S. P. Brothers, and C. Wahlestedt, “A novel RNA transcript with antiapoptotic function is silenced in fragile X syndrome,” PLoS One, vol. 3, no. 1, Article ID e1486, 2008. View at Publisher · View at Google Scholar · View at Scopus
  84. P. D. Ladd, L. E. Smith, N. A. Rabaia et al., “An antisense transcript spanning the CGG repeat region of FMR1 is upregulated in premutation carriers but silenced in full mutation individuals,” Human Molecular Genetics, vol. 16, no. 24, pp. 3174–3187, 2007. View at Publisher · View at Google Scholar · View at Scopus
  85. B. L. Sopher, P. D. Ladd, V. V. Pineda et al., “CTCF regulates ataxin-7 expression through promotion of a convergently transcribed, antisense noncoding RNA,” Neuron, vol. 70, no. 6, pp. 1071–1084, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. M. L. Moseley, T. Zu, Y. Ikeda et al., “Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8,” Nature Genetics, vol. 38, no. 7, pp. 758–769, 2006. View at Publisher · View at Google Scholar · View at Scopus
  87. Z. Yu, X. Teng, and N. M. Bonini, “Triplet repeat-derived siRNAs enhance RNA-mediated toxicity in a drosophila model for myotonic dystrophy,” PLoS Genetics, vol. 7, no. 3, Article ID e1001340, 2011. View at Publisher · View at Google Scholar · View at Scopus
  88. J. Chen, M. Sun, W. J. Kent et al., “Over 20% of human transcripts might form sense-antisense pairs,” Nucleic Acids Research, vol. 32, no. 16, pp. 4812–4820, 2004. View at Publisher · View at Google Scholar · View at Scopus
  89. X. J. Wang, T. Gaasterland, and N. H. Chua, “Genome-wide prediction and identification of cis-natural antisense transcripts in Arabidopsis thaliana,” Genome Biology, vol. 6, no. 4, article R30, 2005. View at Google Scholar · View at Scopus
  90. G. G. Carmichael, “Antisense starts making more sense,” Nature Biotechnology, vol. 21, no. 4, pp. 371–372, 2003. View at Publisher · View at Google Scholar · View at Scopus
  91. V. V. Lobanenkov, R. H. Nicolas, V. V. Adler et al., “A novel sequence-specific DNA binding protein which interacts with three regularly spaced direct repeats of the CCCTC-motif in the 5′-flanking sequence of the chicken c-myc gene,” Oncogene, vol. 5, no. 12, pp. 1743–1753, 1990. View at Google Scholar · View at Scopus
  92. J. E. Phillips and V. G. Corces, “CTCF: master weaver of the genome,” Cell, vol. 137, no. 7, pp. 1194–1211, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. S. Shukla, E. Kavak, M. Gregory et al., “CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing,” Nature, vol. 479, no. 7371, pp. 74–79, 2011. View at Publisher · View at Google Scholar
  94. N. Engel, J. L. Thorvaldsen, and M. S. Bartolomei, “CTCF binding sites promote transcription initiation and prevent DNA methylation on the maternal allele at the imprinted H19/Igf2 locus,” Human Molecular Genetics, vol. 15, no. 19, pp. 2945–2954, 2006. View at Publisher · View at Google Scholar · View at Scopus
  95. G. N. Filippova, M. K. Cheng, J. M. Moore et al., “Boundaries between chromosomal domains of X inactivation and escape bind CTCF and lack CpG methylation during early development,” Developmental Cell, vol. 8, no. 1, pp. 31–42, 2005. View at Publisher · View at Google Scholar · View at Scopus
  96. G. N. Filippova, C. P. Thienes, B. H. Penn et al., “CTCF-binding sites flank CTG/CAG repeats and form a methylation-sensitive insulator at the DM1 locus,” Nature Genetics, vol. 28, no. 4, pp. 335–343, 2001. View at Publisher · View at Google Scholar · View at Scopus
  97. C. B. Yoo and P. A. Jones, “Epigenetic therapy of cancer: past, present and future,” Nature Reviews Drug Discovery, vol. 5, no. 1, pp. 37–50, 2006. View at Publisher · View at Google Scholar · View at Scopus
  98. N. Jain, A. Rossi, and G. Garcia-Manero, “Epigenetic therapy of leukemia: an update,” International Journal of Biochemistry and Cell Biology, vol. 41, no. 1, pp. 72–80, 2009. View at Publisher · View at Google Scholar · View at Scopus
  99. J. P. J. Issa, G. Garcia-Manero, F. J. Giles et al., “Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2′-deoxycytidine (decitabine) in hematopoietic malignancies,” Blood, vol. 103, no. 5, pp. 1635–1640, 2004. View at Publisher · View at Google Scholar · View at Scopus
  100. H. I. Saba, “Decitabine in the treatment of myelodysplastic syndromes,” Therapeutics and Clinical Risk Management, vol. 3, no. 5, pp. 807–817, 2007. View at Google Scholar · View at Scopus
  101. H. I. Saba and P. W. Wijermans, “Decitabine in myelodysplastic syndromes,” Seminars in Hematology, vol. 42, no. 3, supplement 2, pp. S23–S31, 2005. View at Publisher · View at Google Scholar · View at Scopus
  102. P. Chiurazzi, M. G. Pomponi, R. Willemsen, B. A. Oostra, and G. Neri, “In vitro reactivation of the FMR1 gene involved in fragile X syndrome,” Human Molecular Genetics, vol. 7, no. 1, pp. 109–113, 1998. View at Publisher · View at Google Scholar · View at Scopus
  103. P. Chiurazzi, M. G. Pomponi, R. Pietrobono, C. E. Bakker, G. Neri, and B. A. Oostra, “Synergistic effect of histone hyperacetylation and DNA demethylation in the reactivation of the FMR1 gene,” Human Molecular Genetics, vol. 8, no. 12, pp. 2317–2323, 1999. View at Publisher · View at Google Scholar · View at Scopus
  104. D. J. Stewart, R. C. Donehower, E. A. Eisenhauer et al., “A phase I pharmacokinetic and pharmacodynamic study of the DNA methyltransferase 1 inhibitor MG98 administered twice weekly,” Annals of Oncology, vol. 14, no. 5, pp. 766–774, 2003. View at Publisher · View at Google Scholar · View at Scopus
  105. E. Winquist, J. Knox, J. P. Ayoub et al., “Phase II trial of DNA methyltransferase 1 inhibition with the antisense oligonucleotide MG98 in patients with metastatic renal carcinoma: a National Cancer Institute of Canada Clinical Trials Group investigational new drug study,” Investigational New Drugs, vol. 24, no. 2, pp. 159–167, 2006. View at Publisher · View at Google Scholar · View at Scopus
  106. R. J. Amato, “Inhibition of DNA methylation by antisense oligonucleotide MG98 as cancer therapy,” Clinical Genitourinary Cancer, vol. 5, no. 7, pp. 422–426, 2007. View at Publisher · View at Google Scholar · View at Scopus
  107. R. Plummer, L. Vidal, M. Griffin et al., “Phase I study of MG98, an oligonucleotide antisense inhibitor of human DNA methyltransferase 1, given as a 7-day infusion in patients with advanced solid tumors,” Clinical Cancer Research, vol. 15, no. 9, pp. 3177–3183, 2009. View at Publisher · View at Google Scholar · View at Scopus
  108. K. Kato, N. K. Long, H. Makita et al., “Effects of green tea polyphenol on methylation status of RECK gene and cancer cell invasion in oral squamous cell carcinoma cells,” British Journal of Cancer, vol. 99, no. 4, pp. 647–654, 2008. View at Publisher · View at Google Scholar · View at Scopus
  109. Q. P. Dou, “Molecular mechanisms of green tea polyphenols,” Nutrition and Cancer, vol. 61, no. 6, pp. 827–835, 2009. View at Publisher · View at Google Scholar · View at Scopus
  110. Y. Yuasa, H. Nagasaki, Y. Akiyama et al., “DNA methylation status is inversely correlated with green tea intake and physical activity in gastric cancer patients,” International Journal of Cancer, vol. 124, no. 11, pp. 2677–2682, 2009. View at Publisher · View at Google Scholar · View at Scopus
  111. M. Pandey, S. Shukla, and S. Gupta, “Promoter demethylation and chromatin remodeling by green tea polyphenols leads to re-expression of GSTP1 in human prostate cancer cells,” International Journal of Cancer, vol. 126, no. 11, pp. 2520–2533, 2010. View at Publisher · View at Google Scholar · View at Scopus
  112. R. Butler and G. P. Bates, “Histone deacetylase inhibitors as therapeutics for polyglutamine disorders,” Nature Reviews Neuroscience, vol. 7, no. 10, pp. 784–796, 2006. View at Publisher · View at Google Scholar · View at Scopus
  113. R. Festenstein, “Breaking the silence in Friedreich's ataxia,” Nature Chemical Biology, vol. 2, no. 10, pp. 512–513, 2006. View at Publisher · View at Google Scholar · View at Scopus
  114. J. P. Sarsero, L. Li, H. Wardan, K. Sitte, R. Williamson, and P. A. Ioannou, “Upregulation of expression from the FRDA genomic locus for the therapy of Friedreich ataxia,” Journal of Gene Medicine, vol. 5, no. 1, pp. 72–81, 2003. View at Publisher · View at Google Scholar · View at Scopus
  115. M. Rai, E. Soragni, C. J. Chou et al., “Two new pimelic diphenylamide HDAC inhibitors induce sustained frataxin upregulation in cells from Friedreich's ataxia patients and in a mouse model,” PloS One, vol. 5, no. 1, Article ID e8825, 2010. View at Publisher · View at Google Scholar · View at Scopus
  116. C. J. Chou, D. Herman, and J. M. Gottesfeld, “Pimelic diphenylamide 106 is a slow, tight-binding inhibitor of class I histone deacetylases,” Journal of Biological Chemistry, vol. 283, no. 51, pp. 35402–35409, 2008. View at Publisher · View at Google Scholar · View at Scopus
  117. E. Soragni, D. Herman, S. Y. R. Dent, J. M. Gottesfeld, R. D. Wells, and M. Napierala, “Long intronic GAA•TTC repeats induce epigenetic changes and reporter gene silencing in a molecular model of Friedreich ataxia,” Nucleic Acids Research, vol. 36, no. 19, pp. 6056–6065, 2008. View at Publisher · View at Google Scholar · View at Scopus
  118. C. Xu, E. Soragni, C. J. Chou et al., “Chemical probes identify a role for histone deacetylase 3 in Friedreich's ataxia gene silencing,” Chemistry and Biology, vol. 16, no. 9, pp. 980–989, 2009. View at Publisher · View at Google Scholar · View at Scopus
  119. S. Ghosh and M. B. Feany, “Comparison of pathways controlling toxicity in the eye and brain in Drosophila models of human neurodegenerative diseases,” Human Molecular Genetics, vol. 13, no. 18, pp. 2011–2018, 2004. View at Publisher · View at Google Scholar · View at Scopus
  120. H. Ota, E. Tokunaga, K. Chang et al., “Sirt1 inhibitor, Sirtinol, induces senescence-like growth arrest with attenuated Ras-MAPK signaling in human cancer cells,” Oncogene, vol. 25, no. 2, pp. 176–185, 2006. View at Publisher · View at Google Scholar · View at Scopus
  121. R. Biacsi, D. Kumari, and K. Usdin, “SIRT1 inhibition alleviates gene silencing in Fragile X mental retardation syndrome,” PLoS Genetics, vol. 4, no. 3, Article ID e1000017, 2008. View at Publisher · View at Google Scholar · View at Scopus
  122. L. Garbes, M. Riessland, I. Hölker et al., “LBH589 induces up to 10-fold SMN protein levels by several independent mechanisms and is effective even in cells from SMA patients non-responsive to valproate,” Human Molecular Genetics, vol. 18, no. 19, pp. 3645–3658, 2009. View at Publisher · View at Google Scholar · View at Scopus
  123. Y. B. Kim, K. H. Lee, K. Sugita, M. Yoshida, and S. Horinouchi, “Oxamflatin is a novel antitumor compound that inhibits mammalian histone deacetylase,” Oncogene, vol. 18, no. 15, pp. 2461–2470, 1999. View at Publisher · View at Google Scholar · View at Scopus
  124. D. Cecconi, M. Donadelli, E. Dalla Pozza et al., “Synergistic effect of trichostatin A and 5-aza-2′-deoxycytidine on growth inhibition of pancreatic endocrine tumour cell lines: a proteomic study,” Proteomics, vol. 9, no. 7, pp. 1952–1966, 2009. View at Publisher · View at Google Scholar · View at Scopus
  125. W. Luszczek, V. Cheriyath, T. M. Mekhail, and E. C. Borden, “Combinations of DNA methyltransferase and histone deacetylase inhibitors induce DNA damage in small cell lung cancer cells: correlation of resistance with IFN-stimulated gene expression,” Molecular Cancer Therapeutics, vol. 9, no. 8, pp. 2309–2321, 2010. View at Publisher · View at Google Scholar · View at Scopus
  126. J. P. Cogswell, J. Ward, I. A. Taylor et al., “Identification of miRNA changes in Alzheimer's disease brain and CSF yields putative biomarkers and insights into disease pathways,” Journal of Alzheimer's Disease, vol. 14, no. 1, pp. 27–41, 2008. View at Google Scholar · View at Scopus
  127. S. T. Lee, K. Chu, W. S. Im et al., “Altered microRNA regulation in Huntington's disease models,” Experimental Neurology, vol. 227, no. 1, pp. 172–179, 2011. View at Publisher · View at Google Scholar
  128. L. H. Mahishi, R. P. Hart, D. R. Lynch, and R. R. Ratan, “miR-886-3p levels are elevated in Friedreich Ataxia,” The Journal of Neuroscience, vol. 32, no. 27, pp. 9369–9373, 2012. View at Publisher · View at Google Scholar
  129. G. J. Hannon, “RNA interference,” Nature, vol. 418, no. 6894, pp. 244–251, 2002. View at Publisher · View at Google Scholar · View at Scopus
  130. B. A. Janowski, J. Hu, and D. R. Corey, “Silencing gene expression by targeting chromosomal DNA with antigene peptide nucleic acids and duplex RNAs,” Nature Protocols, vol. 1, no. 1, pp. 436–443, 2006. View at Publisher · View at Google Scholar · View at Scopus
  131. B. A. Janowski, K. E. Huffman, J. C. Schwartz et al., “Inhibiting gene expression at transcription start sites in chromosomal DNA with antigene RNAs,” Nature Chemical Biology, vol. 1, no. 4, pp. 216–222, 2005. View at Publisher · View at Google Scholar · View at Scopus
  132. K. V. Morris, S. W. L. Chan, S. E. Jacobsen, and D. J. Looney, “Small interfering RNA-induced transcriptional gene silencing in human cells,” Science, vol. 305, no. 5688, pp. 1289–1292, 2004. View at Publisher · View at Google Scholar · View at Scopus
  133. B. A. Janowski, S. T. Younger, D. B. Hardy, R. Ram, K. E. Huffman, and D. R. Corey, “Activating gene expression in mammalian cells with promoter-targeted duplex RNAs,” Nature Chemical Biology, vol. 3, no. 3, pp. 166–173, 2007. View at Publisher · View at Google Scholar · View at Scopus
  134. J. K. Watts, D. Yu, K. Charisse et al., “Effect of chemical modifications on modulation of gene expression by duplex antigene RNAs that are complementary to non-coding transcripts at gene promoters,” Nucleic Acids Research, vol. 38, no. 15, pp. 5242–5259, 2010. View at Publisher · View at Google Scholar · View at Scopus
  135. L. C. Li, S. T. Okino, H. Zhao et al., “Small dsRNAs induce transcriptional activation in human cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 46, pp. 17337–17342, 2006. View at Publisher · View at Google Scholar · View at Scopus
  136. S. Kriaucionis and N. Heintz, “The nuclear DNA base 5-hydroxymethylcytosine is present in purkinje neurons and the brain,” Science, vol. 324, no. 5929, pp. 929–930, 2009. View at Publisher · View at Google Scholar · View at Scopus
  137. M. Tahiliani, K. P. Koh, Y. Shen et al., “Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1,” Science, vol. 324, no. 5929, pp. 930–935, 2009. View at Publisher · View at Google Scholar · View at Scopus
  138. A. Martelli, M. Napierala, and H. Puccio, “Understanding the genetic and molecular pathogenesis of Friedreich’s ataxia through animal and cellular models,” Disease Models & Mechanisms, vol. 5, no. 2, pp. 165–176, 2012. View at Publisher · View at Google Scholar
  139. M. A. Pook, “DNA methylation and trinucleotide repeat expansion diseases,” in DNA Methylation—From Genomics to Technology, T. Tatarinova and O. Kerton, Eds., InTech, 2012. View at Google Scholar