Table of Contents Author Guidelines Submit a Manuscript
Genetics Research International
Volume 2014, Article ID 698574, 5 pages
http://dx.doi.org/10.1155/2014/698574
Research Article

MTHFR Gene C677T Polymorphism in Autism Spectrum Disorders

1Department of Medical Biology, Erciyes University Medical School, 38039 Kayseri, Turkey
2Department of Child Psychiatry, Erciyes University Medical School, 38039 Kayseri, Turkey
3Department of Medical Genetics, Erciyes University Medical School, 38039 Kayseri, Turkey

Received 25 August 2014; Revised 22 October 2014; Accepted 23 October 2014; Published 6 November 2014

Academic Editor: Francine Durocher

Copyright © 2014 Elif Funda Sener et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. M. Persico and V. Napolioni, “Autism genetics,” Behavioural Brain Research, vol. 251, pp. 95–112, 2013. View at Publisher · View at Google Scholar · View at Scopus
  2. J. H. Miles, “Autism spectrum disorders—a genetics review,” Genetics in Medicine, vol. 13, no. 4, pp. 278–294, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. B. Devlin and S. W. Scherer, “Genetic architecture in autism spectrum disorder,” Current Opinion in Genetics & Development, vol. 22, no. 3, pp. 229–237, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Szatmari, X.-Q. Liu, J. Goldberg et al., “Sex differences in repetitive stereotyped behaviors in autism: implications for genetic liability,” American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, vol. 159, no. 1, pp. 5–12, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. N. J. Mendelsohn and G. B. Schaefer, “Genetic evaluation of autism,” Seminars in Pediatric Neurology, vol. 15, no. 1, pp. 27–31, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. G. B. Schaefer and N. J. Mendelsohn, “Clinical genetics evaluation in identifying the etiology of autism spectrum disorders,” Genetics in Medicine, vol. 10, no. 4, pp. 301–305, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. X. Liu, F. Solehdin, I. L. Cohen et al., “Population- and family-based studies associate the MTHFR gene with idiopathic autism in simplex families,” Journal of Autism and Developmental Disorders, vol. 41, no. 7, pp. 938–944, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. V. Eapen, “Genetic basis of autism: is there a way forward?” Current Opinion in Psychiatry, vol. 24, no. 3, pp. 226–236, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. J. L. Silverman, M. Yang, C. Lord, and J. N. Crawley, “Behavioural phenotyping assays for mouse models of autism,” Nature Reviews Neuroscience, vol. 11, no. 7, pp. 490–502, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Chaste and M. Leboyer, “Autism risk factors: genes, environment, and gene-environment interactions,” Dialogues in Clinical Neuroscience, vol. 14, no. 3, pp. 281–292, 2012. View at Google Scholar · View at Scopus
  11. Y.-H. Jiang, T. Sahoo, R. C. Michaelis et al., “A mixed epigenetic/genetic model for oligogenic inheritance of autism with a limited role for UBE3A,” American Journal of Medical Genetics Part A, vol. 131, no. 1, pp. 1–10, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. N. C. Schanen, “Epigenetics of autism spectrum disorders,” Human Molecular Genetics, vol. 15, no. 2, pp. R138–R150, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. R. P. Ghosh, R. A. Horowitz-Scherer, T. Nikitina, L. M. Gierasch, and C. L. Woodcock, “Rett syndrome-causing mutations in human MeCP2 result in diverse structural changes that impact folding and DNA interactions,” The Journal of Biological Chemistry, vol. 283, no. 29, pp. 20523–20534, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Boris, A. Goldblatt, J. Galanko, and J. James, “Association of MTHFR gene variants with autism,” Journal of the American Physician and Surgeons, vol. 9, no. 4, pp. 106–108, 2004. View at Google Scholar
  15. S. J. James, S. Melnyk, S. Jernigan et al., “Metabolic endophenotype and related genotypes are associated with oxidative stress in children with autism,” American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, vol. 141, no. 8, pp. 947–956, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. R. P. Goin-Kochel, A. E. Porter, S. U. Peters, M. Shinawi, T. Sahoo, and A. L. Beaudet, “The MTHFR 677CT polymorphism and behaviors in children with autism: exploratory genotype-phenotype correlations,” Autism Research, vol. 2, no. 2, pp. 98–108, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. N. S. Mohammad, J. M. N. Jain, K. P. Chintakindi, R. P. Singh, U. Naik, and R. R. D. Akella, “Aberrations in folate metabolic pathway and altered susceptibility to autism,” Psychiatric Genetics, vol. 19, no. 4, pp. 171–176, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Frosst, H. J. Blom, R. Milos et al., “A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase,” Nature Genetics, vol. 10, no. 1, pp. 111–113, 1995. View at Publisher · View at Google Scholar · View at Scopus
  19. American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders (DSM-IV), American Psychiatric Press, Washington, DC, USA, 4th edition, 2000.
  20. American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders, American Psychiatric Press, Washington, DC, USA, 5th edition, 2013.
  21. M. Ozkan, S. Sivgin, I. Kocyigit et al., “Do thrombophilic gene mutations have a role on thromboembolic events in cancer patients?” Asia-Pacific Journal of Clinical Oncology, vol. 8, no. 3, pp. e34–e41, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Kubota, K. Miyake, and T. Hirasawa, “Epigenetic understanding of gene-environment interactions in psychiatric disorders: a new concept of clinical genetics,” Clinical Epigenetics, vol. 4, no. 1, article 1, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. M. J. Millan, “An epigenetic framework for neurodevelopmental disorders: from pathogenesis to potential therapy,” Neuropharmacology, vol. 68, pp. 2–82, 2013. View at Publisher · View at Google Scholar · View at Scopus
  24. S. J. James, P. Cutler, S. Melnyk et al., “Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism,” The American Journal of Clinical Nutrition, vol. 80, no. 6, pp. 1611–1617, 2004. View at Google Scholar · View at Scopus
  25. S. P. Paşca, E. Dronca, T. Kaucsár et al., “One carbon metabolism disturbances and the C677T MTHFR gene polymorphism in children with autism spectrum disorders,” Journal of Cellular and Molecular Medicine, vol. 13, no. 10, pp. 4229–4238, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Guo, H. Chen, B. Liu, W. Ji, and C. Yang, “Methylenetetrahydrofolate reductase polymorphisms C677T and risk of autism in the Chinese han population,” Genetic Testing and Molecular Biomarkers, vol. 16, no. 8, pp. 968–973, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. P. A. dos Santos, D. Longo, A. P. C. Brandalize, and L. Schüler-Faccini, “MTHFR C677T is not a risk factor for autism spectrum disorders in South Brazil,” Psychiatric Genetics, vol. 20, no. 4, pp. 187–189, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Park, M. Ro, J.-A. Pyun et al., “MTHFR 1298A>C is a risk factor for autism spectrum disorder in the Korean population,” Psychiatry Research, vol. 215, no. 1, pp. 258–259, 2014. View at Publisher · View at Google Scholar · View at Scopus
  29. D. Pu, Y. Shen, and J. Wu, “Association between mthfr gene polymorphisms and the risk of autism spectrum disorders: a meta-analysis,” Autism Research, vol. 6, no. 5, pp. 384–392, 2013. View at Publisher · View at Google Scholar · View at Scopus