Table of Contents Author Guidelines Submit a Manuscript
Gastroenterology Research and Practice
Volume 2011, Article ID 364040, 11 pages
http://dx.doi.org/10.1155/2011/364040
Review Article

Why and How Meet n-3 PUFA Dietary Recommendations?

Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain (UCL), GAEN 53/79 Avenue Mounier, 53, 1200 Brussels, Belgium

Received 1 June 2010; Revised 20 September 2010; Accepted 9 October 2010

Academic Editor: Lubos Sobotka

Copyright © 2011 Olivier Molendi-Coste et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C.-M. Hwu, C. A. Hsiung, K.-D. Wu et al., “Diagnosis of insulin resistance in hypertensive patients by the metabolic syndrome: AHA vs. IDF definitions,” International Journal of Clinical Practice, vol. 62, no. 9, pp. 1441–1446, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. C. D. Byrne, “Fatty liver: role of inflammation and fatty acid nutrition,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 82, no. 4-6, pp. 265–271, 2010. View at Publisher · View at Google Scholar
  3. L. C. A. Cerchietti, A. H. Navigante, and M. A. Castro, “Effects of eicosapentaenoic and docosahexaenoic n-3 fatty acids from fish oil and preferential Cox-2 inhibition on systemic syndromes in patients with advanced lung cancer,” Nutrition and Cancer, vol. 59, no. 1, pp. 14–20, 2007. View at Google Scholar · View at Scopus
  4. D. Giugliano, A. Ceriello, and K. Esposito, “Are there specific treatments for the metabolic syndrome?” American Journal of Clinical Nutrition, vol. 87, no. 1, pp. 8–11, 2008. View at Google Scholar · View at Scopus
  5. U. N. Das, “Is metabolic syndrome X an inflammatory condition?” Experimental Biology and Medicine, vol. 227, no. 11, pp. 989–997, 2002. View at Google Scholar · View at Scopus
  6. U. N. Das, “Obesity, metabolic syndrome X, and inflammation,” Nutrition, vol. 18, no. 5, pp. 430–432, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Bulló, P. Casas-Agustench, P. Amigó-Correig, J. Aranceta, and J. Salas-Salvadó, “Inflammation, obesity and comorbidities: the role of diet,” Public Health Nutrition, vol. 10, no. 10, pp. 1164–1172, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. A. W. Ferrante Jr., “Obesity-induced inflammation: a metabolic dialogue in the language of inflammation,” Journal of Internal Medicine, vol. 262, no. 4, pp. 408–414, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Lanthier, O. Molendi-Coste, Y. Horsmans, N. Van Rooijen, P. D. Cani, and I. A. Leclercq, “Kupffer cell activation is a causal factor for hepatic insulin resistance,” American Journal of Physiology, vol. 298, no. 1, pp. G107–G116, 2010. View at Publisher · View at Google Scholar
  10. W. Luczynski, A. Bossowski, B. Glowinska-Olszewska, J. Kos, and A. Stasiak-Barmuta, “The role of T-regulatory cells in the pathogenesis of immunological disturbances accompanying obesity and atherosclerosis,” Postępy Higieny i Medycyny Doświadczalne, vol. 64, pp. 156–160, 2010. View at Google Scholar
  11. Life Sciences Research Office FoASfEB, Third Report on Nutrition Monitoring in the United States, U S Government Printing Office, Washington, DC, USA, 1995.
  12. L. Cordain, S. B. Eaton, A. Sebastian et al., “Origins and evolution of the Western diet: health implications for the 21st century,” American Journal of Clinical Nutrition, vol. 81, no. 2, pp. 341–354, 2005. View at Google Scholar · View at Scopus
  13. J. Schmidhuber, “The EU Diet–Evolution, Evaluation and Impacts of the CAP. Document presented at the WHO Forum on Trade and Healthy Food and Diets Montréal,” 2007.
  14. L. Ferder, M. D. Ferder, and F. Inserra, “The role of high-fructose corn syrup in metabolic syndrome and hypertension,” Current Hypertension Reports, vol. 12, no. 2, pp. 105–112, 2010. View at Publisher · View at Google Scholar
  15. J. Linseisen, A. A. Welch, M. Ocke et al., “Dietary fat intake in the European prospective investigation into cancer and nutrition: results from the 24-h dietary recalls,” European Journal of Clinical Nutrition, vol. 63, supplement 4, pp. S61–S80, 2009. View at Google Scholar
  16. J. R. Lupien, A. Richmond, M. Randell, J. P. Cotier, A. Ghazali, and R. Dawson, Food, Nutrition and Agriculture. Edible Fats and Oils, Agriculture and Consumer Protection Department , Food and Agriculture Organization of the United Nations, 1994.
  17. A. P. Simopoulos, “n-3 fatty acids and human health: defining strategies for public policy,” Lipids, vol. 36, pp. S83–S89, 2001. View at Google Scholar · View at Scopus
  18. S. B. Eaton, M. J. Konner, and L. Cordain, “Diet-dependent acid load, Paleolithic nutrition, and evolutionary health promotion,” American Journal of Clinical Nutrition, vol. 91, no. 2, pp. 295–297, 2010. View at Publisher · View at Google Scholar
  19. A. P. Simopoulos, “Is insulin resistance influenced by dietary linoleic acid and trans fatty acids?” Free Radical Biology and Medicine, vol. 17, no. 4, pp. 367–372, 1994. View at Publisher · View at Google Scholar · View at Scopus
  20. J. A. Napier, O. Sayanova, B. Qi, and C. M. Lazarus, “Progress toward the production of long-chain polyunsaturated fatty acids in transgenic plants,” Lipids, vol. 39, no. 11, pp. 1067–1075, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. J.-B. Ruidavets, V. Bongard, J. Dallongeville et al., “High consumptions of grain, fish, dairy products and combinations of these are associated with a low prevalence of metabolic syndrome,” Journal of Epidemiology and Community Health, vol. 61, no. 9, pp. 810–817, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. N. Ruiz-López, R. P. Haslam, M. Venegas-Calerón et al., “The synthesis and accumulation of stearidonic acid in transgenic plants: a novel source of 'heart-healthy' omega-3 fatty acids,” Plant Biotechnology Journal, vol. 7, no. 7, pp. 704–716, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Flachs, M. Rossmeisl, M. Bryhn, and J. Kopecky, “Cellular and molecular effects of n-3 polyunsaturated fatty acids on adipose tissue biology and metabolism,” Clinical Science, vol. 116, no. 1, pp. 1–16, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. P. M. Kris-Etherton, D. S. Taylor, S. Yu-Poth et al., “Polyunsaturated fatty acids in the food chain in the United States,” American Journal of Clinical Nutrition, vol. 71, no. 1, supplement, pp. 179S–188S, 2000. View at Google Scholar · View at Scopus
  25. A. A. Welch, E. Lund, P. Amiano et al., “Variability of fish consumption within the 10 European countries participating in the European Investigation into Cancer and Nutrition (EPIC) study,” Public Health Nutrition, vol. 5, no. 6, pp. 1273–1285, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Blanchet, M. Lucas, P. Julien, R. Morin, S. Gingras, and É. Dewailly, “Fatty acid composition of wild and farmed Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss),” Lipids, vol. 40, no. 5, pp. 529–531, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. Pôle "Filière Produits Aquatiques", “ADRIA Normandie, CEVPM, ID Mer, ITERG, ISHA. Projet Composition nutritionnelle des produits aquatiques,” 2007, http://www.nutraqua.com.
  28. U.S. Department of Agriculture ARS, “USDA National Nutrient Database for Standard Reference, Release 22,” Nutrient Data Laboratory Home Page, 2009.
  29. B. M. Anderson and D. W. L. Ma, “Are all n-3 polyunsaturated fatty acids created equal?” Lipids in Health and Disease, vol. 8, article no. 33, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. T. A. B. Sanders, “Polyunsaturated fatty acids in the food chain in Europe,” American Journal of Clinical Nutrition, vol. 71, no. 1, pp. 176S–178S, 2000. View at Google Scholar · View at Scopus
  31. S. O. Ebbesson, M. E. Tejero, E. D. Nobmann et al., “Fatty acid consumption and metabolic syndrome components: the GOCADAN study,” Journal of the Cardiometabolic Syndrome, vol. 2, no. 4, pp. 244–249, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Kennedy, K. Martinez, C.-C. Chuang, K. Lapoint, and M. Mcintosh, “Saturated fatty acid-mediated inflammation and insulin resistance in adipose tissue: mechanisms of action and implications,” Journal of Nutrition, vol. 139, no. 1, pp. 1–4, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. T. A. Dolecek, “Epidemiological evidence of relationships between dietary polyunsaturated fatty acids and mortality in the Multiple Risk Factor Intervention Trial,” Proceedings of the Society for Experimental Biology and Medicine, vol. 200, no. 2, pp. 177–182, 1992. View at Google Scholar · View at Scopus
  34. M. A. Delavar, M. S. Lye, G. L. Khor, S. T. Hassan, and P. Hanachi, “Dietary patterns and the metabolic syndrome in middle aged women, Babol, Iran,” Asia Pacific Journal of Clinical Nutrition, vol. 18, no. 2, pp. 285–292, 2009. View at Google Scholar · View at Scopus
  35. G. Zuliani, M. Galvani, E. Leitersdorf, S. Volpato, M. Cavalieri, and R. Fellin, “The role of polyunsaturated fatty acids (PUFA) in the treatment of dyslipidemias,” Current Pharmaceutical Design, vol. 15, no. 36, pp. 4087–4093, 2009. View at Publisher · View at Google Scholar
  36. U. N. Das, “Essential fatty acids and their metabolites could function as endogenous HMG-CoA reductase and ACE enzyme inhibitors, anti-arrhythmic, anti-hypertensive, anti-atherosclerotic, anti-inflammatory, cytoprotective, and cardioprotective molecules,” Lipids in Health and Disease, vol. 7, article no. 37, 2008. View at Publisher · View at Google Scholar
  37. W. S. Harris, D. Mozaffarian, M. Lefevre et al., “Towards establishing dietary reference intakes for eicosapentaenoic and docosahexaenoic acids,” Journal of Nutrition, vol. 139, no. 4, pp. 804S–819S, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. C. H. S. Ruxton, S. C. Reed, J. A. Simpson, and K. J. Millington, “The health benefits of omega-3 polyunsaturated fatty acids: a review of the evidence,” Journal of Human Nutrition and Dietetics, vol. 20, no. 3, pp. 275–285, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. A. P. Simopoulos, “Omega-3 fatty acids and antioxidants in edible wild plants,” Biological Research, vol. 37, no. 2, pp. 263–277, 2004. View at Google Scholar · View at Scopus
  40. L. Ferrucci, A. Cherubini, S. Bandinelli et al., “Relationship of plasma polyunsaturated fatty acids to circulating inflammatory markers,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 2, pp. 439–446, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Kopecky, M. Rossmeisl, P. Flachs et al., “n-3 PUFA: bioavailability and modulation of adipose tissue function,” Proceedings of the Nutrition Society, vol. 68, pp. 361–369, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. E. Lattka, T. Illig, J. Heinrich, and B. Koletzko, “Do FADS genotypes enhance our knowledge about fatty acid related phenotypes?” Clinical Nutrition, vol. 29, no. 3, pp. 277–287, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. C. N. Serhan, “Systems approach to inflammation resolution: identification of novel anti-inflammatory and pro-resolving mediators,” Journal of Thrombosis and Haemostasis, vol. 7, supplement, no. 1, pp. 44–48, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. U. N. Das, “A defect in the activity of Δ6 and Δ5 desaturases may be a factor predisposing to the development of insulin resistance syndrome,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 72, no. 5, pp. 343–350, 2005. View at Publisher · View at Google Scholar
  45. A. M. Devlin, R. Singh, R. E. Wade, S. M. Innis, T. Bottiglieri, and S. R. Lentz, “Hypermethylation of Fads2 and altered hepatic fatty acid and phospholipid metabolism in mice with hyperhomocysteinemia,” Journal of Biological Chemistry, vol. 282, no. 51, pp. 37082–37090, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. G. L. Bannenberg, “Therapeutic applicability of anti-inflammatory and proresolving polyunsaturated fatty acid-derived lipid mediators,” The Scientific World Journal, vol. 10, pp. 676–712, 2010. View at Publisher · View at Google Scholar
  47. M. Lagarde, P. Chen, E. Véricel, and M. Guichardant, “Fatty acid-derived lipid mediators and blood platelet aggregation,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 82, no. 4–6, pp. 227–230, 2010. View at Publisher · View at Google Scholar
  48. U. N. Das, “Essential fatty acids—a review,” Current Pharmaceutical Biotechnology, vol. 7, no. 6, pp. 467–482, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. F. Visioli and T. M. Hagen, “Nutritional strategies for healthy cardiovascular aging: focus on micronutrients,” Pharmacological Research, vol. 55, no. 3, pp. 199–206, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. R. Farzaneh-Far, J. Lin, E. S. Epel, W. S. Harris, E. H. Blackburn, and M. A. Whooley, “Association of marine omega-3 fatty acid levels with telomeric aging in patients with coronary heart disease,” Journal of the American Medical Association, vol. 303, no. 3, pp. 250–257, 2010. View at Publisher · View at Google Scholar
  51. A. P. Simopoulos, “Evolutionary aspects ofdiet, theomega-6/omega-3ratio andgenetic variation: nutritional implications forchronic diseases,” Biomedicine and Pharmacotherapy, vol. 60, no. 9, pp. 502–507, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. E. Lattka, T. Illig, B. Koletzko, and J. Heinrich, “Genetic variants of the FADS1 FADS2 gene cluster as related to essential fatty acid metabolism,” Current Opinion in Lipidology, vol. 21, no. 1, pp. 64–69, 2010. View at Publisher · View at Google Scholar
  53. H. Allayee, N. Roth, and H. N. Hodis, “Polyunsaturated fatty acids and cardiovascular disease: implications for nutrigenetics,” Journal of Nutrigenetics and Nutrigenomics, vol. 2, no. 3, pp. 140–148, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. A. C. Reese, V. Fradet, and J. S. Witte, “ω-3 Fatty acids, genetic variants in COX-2 and prostate cancer,” Journal of Nutrigenetics and Nutrigenomics, vol. 2, no. 3, pp. 149–158, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. U. N. Das, “Is metabolic syndrome X a disorder of the brain with the initiation of low-grade systemic inflammatory events during the perinatal period?” Journal of Nutritional Biochemistry, vol. 18, no. 11, pp. 701–713, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Chmurzynska, “Fetal programming: link between early nutrition, DNA methylation, and complex diseases,” Nutrition Reviews, vol. 68, no. 2, pp. 87–98, 2010. View at Publisher · View at Google Scholar
  57. E. Lopez-Garcia, M. B. Schulze, J. E. Manson et al., “Consumption of (n-3) fatty acids is related to plasma biomarkers of inflammation and endothelial activation in women,” Journal of Nutrition, vol. 134, no. 7, pp. 1806–1811, 2004. View at Google Scholar · View at Scopus
  58. U. N. Das, “GLUT-4, tumour necrosis factor, essential fatty acids and daf-genes and their role in glucose homeostasis, insulin resistance, non-insulin dependent diabetes mellitus, and longevity,” Journal of Association of Physicians of India, vol. 47, no. 4, pp. 431–435, 1999. View at Google Scholar · View at Scopus
  59. T. Madsen, H. A. Skou, V. E. Hansen et al., “C-reactive protein, dietary n-3 fatty acids, and the extent of coronary artery disease,” American Journal of Cardiology, vol. 88, no. 10, pp. 1139–1142, 2001. View at Publisher · View at Google Scholar · View at Scopus
  60. U. N. Das, “Long-chain polyunsaturated fatty acids, endothelial lipase and atherosclerosis,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 72, no. 3, pp. 173–179, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. D. C. Chan, G. F. Watts, P. H. R. Barrett, L. J. Beilin, and T. A. Mori, “Effect of atorvastatin and fish oil on plasma high-sensitivity C-reactive protein concentrations in individuals with visceral obesity,” Clinical Chemistry, vol. 48, no. 6, pp. 877–883, 2002. View at Google Scholar · View at Scopus
  62. T. A. Mori, R. J. Woodman, V. Burke, I. B. Puddey, K. D. Croft, and L. J. Beilin, “Effect of eicosapentaenoic acid and docosahexaenoic acid on oxidative stress and inflammatory markers in treated-hypertensive type 2 diabetic subjects,” Free Radical Biology and Medicine, vol. 35, no. 7, pp. 772–781, 2003. View at Publisher · View at Google Scholar · View at Scopus
  63. L. S. Rallidis, G. Paschos, G. K. Liakos, A. H. Velissaridou, G. Anastasiadis, and A. Zampelas, “Dietary α-linolenic acid decreases C-reactive protein, serum amyloid A and interleukin-6 in dyslipidaemic patients,” Atherosclerosis, vol. 167, no. 2, pp. 237–242, 2003. View at Publisher · View at Google Scholar · View at Scopus
  64. G. Zhao, T. D. Etherton, K. R. Martin, S. G. West, P. J. Gillies, and P. M. Kris-Etherton, “Dietary α-linolenic acid reduces inflammatory and lipid cardiovascular risk factors in hypercholesterolemic men and women,” Journal of Nutrition, vol. 134, no. 11, pp. 2991–2997, 2004. View at Google Scholar · View at Scopus
  65. C. Couet, J. Delarue, P. Ritz, J.-M. Antoine, and F. Lamisse, “Effect of dietary fish oil on body fat mass and basal fat oxidation in healthy adults,” International Journal of Obesity, vol. 21, no. 8, pp. 637–643, 1997. View at Google Scholar
  66. I. Abete, A. Astrup, J. A. Martínez, I. Thorsdottir, and M. A. Zulet, “Obesity and the metabolic syndrome: role of different dietary macronutrient distribution patterns and specific nutritional components on weight loss and maintenance,” Nutrition Reviews, vol. 68, no. 4, pp. 214–231, 2010. View at Publisher · View at Google Scholar
  67. J. Todoric, M. Löffler, J. Huber et al., “Adipose tissue inflammation induced by high-fat diet in obese diabetic mice is prevented by n-3 polyunsaturated fatty acids,” Diabetologia, vol. 49, no. 9, pp. 2109–2119, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. M. Mattar and O. Obeid, “Fish oil and the management of hypertriglyceridemia,” Nutrition and Health, vol. 20, no. 1, pp. 41–49, 2009. View at Google Scholar · View at Scopus
  69. L. M. De Santa Olalla, F. J. Sáchez Muniz, and M. P. Vaquero, “N-3 fatty acids in glucose metabolism and insulin sensitivity,” Nutricion Hospitalaria, vol. 24, no. 2, pp. 113–127, 2009. View at Google Scholar · View at Scopus
  70. E. Peyron-Caso, S. Fluteau-Nadler, M. Kabir et al., “Regulation of glucose transport and transporter 4 (Glut-4) in muscle and adipocytes of sucrose-fed rats: effects of n-3 poly- and monounsaturated fatty acids,” Hormone and Metabolic Research, vol. 34, no. 7, pp. 360–366, 2002. View at Publisher · View at Google Scholar · View at Scopus
  71. AL. Ramel, M. T. Jonsdottir, and I. Thorsdottir, “Consumption of cod and weight loss in young overweight and obese adults on an energy reduced diet for 8-weeks,” Nutrition, Metabolism and Cardiovascular Diseases, vol. 19, pp. 690–696, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. M. Ebrahimi, M. Ghayour-Mobarhan, S. Rezaiean et al., “Omega-3 fatty acid supplements improve the cardiovascular risk profile of subjects with metabolic syndrome, including markers of inflammation and auto-immunity,” Acta Cardiologica, vol. 64, no. 3, pp. 321–327, 2009. View at Google Scholar
  73. T. A. Mori, D. Q. Bao, V. Burke, I. B. Puddey, and L. J. Beilin, “Docosahexaenoic acid but not eicosapentaenoic acid lowers ambulatory blood pressure and heart rate in humans,” Hypertension, vol. 34, no. 2, pp. 253–260, 1999. View at Google Scholar · View at Scopus
  74. Ž. Reiner, E. Tedeschi-Reiner, and G. Štajminger, “The role of omega-3 fatty acids from fish in prevention of cardiovascular diseases,” Lijecnicki Vjesnik, vol. 129, no. 10-11, pp. 350–355, 2007. View at Google Scholar · View at Scopus
  75. S. I. Rapoport, M. Igarashi, and F. Gao, “Quantitative contributions of diet and liver synthesis to docosahexaenoic acid homeostasis,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 82, no. 4-6, pp. 273–276, 2010. View at Publisher · View at Google Scholar
  76. P. T. Bozza and J. P.B. Viola, “Lipid droplets in inflammation and cancer,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 82, no. 4-6, pp. 243–250, 2010. View at Publisher · View at Google Scholar
  77. A. P. Simopoulos, “The importance of the ratio of omega-6/omega-3 essential fatty acids,” Biomedicine and Pharmacotherapy, vol. 56, no. 8, pp. 365–379, 2002. View at Publisher · View at Google Scholar · View at Scopus
  78. A. P. Simopoulos, “Nutrigenetics/nutrigenomics,” Annual Review of Public Health, vol. 31, pp. 53–68, 2010. View at Publisher · View at Google Scholar
  79. W. S. Harris, D. Mozaffarian, E. Rimm et al., “Omega-6 fatty acids and risk for cardiovascular disease: a science advisory from the American Heart Association nutrition subcommittee of the council on nutrition, physical activity, and metabolism; council on cardiovascular nursing; and council on epidemiology and prevention,” Circulation, vol. 119, no. 6, pp. 902–907, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. Interim Summary of Conclusions and Dietary Recommendations on Total Fat & Fatty Acids—From the Joint FAO/WHO Expert Consultation on Fats and Fatty Acids in Human Nutrition, WHO HQ, Geneva, Switzerland, 2008.
  81. H. Cortez-Pinto, L. Jesus, H. Barros, C. Lopes, M. C. Moura, and M. E. Camilo, “How different is the dietary pattern in non-alcoholic steatohepatitis patients?” Clinical Nutrition, vol. 25, no. 5, pp. 816–823, 2006. View at Publisher · View at Google Scholar · View at Scopus
  82. G. Musso, R. Gambino, F. De Michieli et al., “Dietary habits and their relations to insulin resistance and postprandial lipemia in nonalcoholic steatohepatitis,” Hepatology, vol. 37, no. 4, pp. 909–916, 2003. View at Publisher · View at Google Scholar · View at Scopus
  83. R. Vuppalanchi, O. W. Cummings, R. Saxena et al., “Relationship among histologic, radiologic, and biochemical assessments of hepatic steatosis: a study of human liver samples,” Journal of Clinical Gastroenterology, vol. 41, no. 2, pp. 206–210, 2007. View at Publisher · View at Google Scholar · View at Scopus
  84. J. L. Domingo and A. Bocio, “Levels of PCDD/PCDFs and PCBs in edible marine species and human intake: a literature review,” Environment International, vol. 33, no. 3, pp. 397–405, 2007. View at Publisher · View at Google Scholar · View at Scopus
  85. A. P. Simopoulos, “Omega-3 fatty acids in health and disease and in growth and development,” American Journal of Clinical Nutrition, vol. 54, no. 3, pp. 438–463, 1991. View at Google Scholar · View at Scopus
  86. B. M. Yashodhara, S. Umakanth, J. M. Pappachan, S. K. Bhat, R. Kamath, and B. H. Choo, “Omega-3 fatty acids: a comprehensive review of their role in health and disease,” Postgraduate Medical Journal, vol. 85, no. 1000, pp. 84–90, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. W. S. Harris, “International recommendations for consumption of long-chain omega-3 fatty acids,” Journal of Cardiovascular Medicine, vol. 8, supplement 1, pp. S50–S52, 2007. View at Publisher · View at Google Scholar · View at Scopus
  88. C. Nagata, N. Takatsuka, and H. Shimizu, “Soy and fish oil intake and mortality in a Japanese community,” American Journal of Epidemiology, vol. 156, no. 9, pp. 824–831, 2002. View at Publisher · View at Google Scholar · View at Scopus
  89. French Agency for Food Safety (AFSSA), “Table de composition nutritionnelle des aliments Ciqual 2008,” 2008, http://www.afssa.fr/TableCIQUAL/.
  90. Institut Français pour la Nutrition, Dossier Scientifique sur les Lipides, 2003.
  91. Centre national d'études et de recommandations sur la nutrition et l'alimentation C, Centre national de la recherche scientifique C, Apports nutritionnels conseillés pour la population française, 3rd edition, 2000.
  92. B. Kermouni-Giorgio, D. Ollivier, and H. Marescot, “Différenciation entre poisson sauvage et poisson d'élevage,” BILAN 1999 Laboratoires de la DGCCRF. DGCCRF 2000, 2010.
  93. Y. Moradi, J. Bakar, S. H. Syed Muhamad, and Y. Che Man, “Effects of different final cooking methods on physico-chemical properties of breaded fish fillets,” American Journal of Food Technology, vol. 4, no. 4, pp. 136–145, 2009. View at Publisher · View at Google Scholar · View at Scopus
  94. N. D. Riediger, R. A. Othman, M. Suh, and M. H. Moghadasian, “A systemic review of the roles of n-3 fatty acids in health and disease,” Journal of the American Dietetic Association, vol. 109, no. 4, pp. 668–679, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. J. A. Napier and I. A. Graham, “Tailoring plant lipid composition: designer oilseeds come of age,” Current Opinion in Plant Biology, vol. 13, no. 3, pp. 330–337, 2010. View at Google Scholar
  96. J. X. Kang, “Omega-6/Omega-3 fatty acid ratio is important for health. Lessons from genetically modified cells and animals,” in Wild-Type Food in Health Promotion and Disease Prevention, R. R. Watson and F. DeMeester, Eds., Humana Press, Totowa, NJ, USA, 2007. View at Google Scholar