Table of Contents Author Guidelines Submit a Manuscript
Gastroenterology Research and Practice
Volume 2012, Article ID 184343, 15 pages
http://dx.doi.org/10.1155/2012/184343
Review Article

Fecal Molecular Markers for Colorectal Cancer Screening

1Department of Pathology and Laboratory Medicine, Royal University Hospital, University of Saskatchewan, Saskatoon, SK, Canada S7N 0W8
2Department of Surgery, University of Saskatchewan, Saskatoon, SK, Canada S7N 0W8

Received 16 August 2011; Accepted 26 September 2011

Academic Editor: Cesare Hassan

Copyright © 2012 Rani Kanthan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. “Colorectal cancer statistics at a glance,” Canadian Cancer Society, 2011, http://www.cancer.ca/Canada-wide/About%20cancer/Cancer%20statistics/Stats%20at%20a%20glance/Colorectal%20cancer.aspx?sc_lang=en.
  2. W. D. Chen, Z. J. Han, J. Skoletsky et al., “Detection in fecal DNA of colon cancer-specific methylation of the nonexpressed vimentin gene,” Journal of the National Cancer Institute, vol. 97, no. 15, pp. 1124–1132, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Olson, D. H. Whitney, K. Durkee, and A. P. Shuber, “DNA stabilization is critical for maximizing performance of fecal DNA-based colorectal cancer tests,” Diagnostic Molecular Pathology, vol. 14, no. 3, pp. 183–191, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. T. R. de Wijkerslooth, P. M. Bossuyt, and E. Dekker, “Strategies in screening for colon carcinoma,” Netherlands Journal of Medicine, vol. 69, no. 3, pp. 112–119, 2011. View at Google Scholar
  5. R. J. Davies, R. Miller, and N. Coleman, “Colorectal cancer screening: prospects for molecular stool analysis,” Nature Reviews Cancer, vol. 5, no. 3, pp. 199–209, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Mak, F. Lalloo, D. G. R. Evans, and J. Hill, “Molecular screening for colorectal cancer,” British Journal of Surgery, vol. 91, no. 7, pp. 790–800, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. D. A. Ahlquist, “Molecular detection of colorectal neoplasia,” Gastroenterology, vol. 138, no. 6, pp. 2127–2139, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Itzkowitz, R. Brand, L. Jandorf et al., “A simplified, noninvasive Stool DNA test for colorectal cancer detection,” American Journal of Gastroenterology, vol. 103, no. 11, pp. 2862–2870, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Dong, W. K.K. Wu, C. W. Wu, J. J.Y. Sung, J. Yu, and S. S.M. Ng, “MicroRNA dysregulation in colorectal cancer: a clinical perspective,” British Journal of Cancer, vol. 104, no. 6, pp. 893–898, 2011. View at Publisher · View at Google Scholar
  10. K. S. Tagore, T. R. Levin, and M. J. Lawson, “Review article: the evolution to stool DNA testing for colorectal cancer,” Alimentary Pharmacology and Therapeutics, vol. 19, no. 12, pp. 1225–1233, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. G. E. Lind, S. A. Danielsen, T. Ahlquist et al., “Identification of an epigenetic biomarker panel with high sensitivity and specificity for colorectal cancer and adenomas,” Molecular Cancer, vol. 10, 2011. View at Publisher · View at Google Scholar
  12. H. J. Kim, M. H. Yu, H. Kim, J. Byun, and C. Lee, “Noninvasive molecular biomarkers for the detection of colorectal cancer,” Journal of Biochemistry and Molecular Biology, vol. 41, no. 10, pp. 685–692, 2008. View at Google Scholar · View at Scopus
  13. G. P. Young and S. Cole, “New stool screening tests for colorectal cancer,” Digestion, vol. 76, no. 1, pp. 26–33, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. D. E. Brenner and G. Rennert, “Fecal DNA biomarkers for the detection of colorectal neoplasia: attractive, but is it feasible?” Journal of the National Cancer Institute, vol. 97, no. 15, pp. 1107–1109, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Lenhard, G. T. Bommer, S. Asutay et al., “Analysis of promoter methylation in stool: a novel method for the detection of colorectal cancer,” Clinical Gastroenterology and Hepatology, vol. 3, no. 2, pp. 142–149, 2005. View at Publisher · View at Google Scholar
  16. D. A. Ahlquist and A. P. Shuber, “Stool screening for colorectal cancer: evolution from occult blood to molecular markers,” Clinica Chimica Acta, vol. 315, no. 1-2, pp. 157–168, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Nair, S. Lagerholm, S. Dutta et al., “Coprocytobiology: on the nature of cellular elements from stools in the pathophysiology of colonic disease,” Journal of Clinical Gastroenterology, vol. 36, no. 5, pp. S84–S93, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. E. Bonanno, F. Rulli, G. Galatà et al., “Stool test for colorectal cancer screening: what is going on?” Surgical Oncology, vol. 16, supplement 1, pp. 43–45, 2007. View at Publisher · View at Google Scholar
  19. U. Haug and H. Brenner, “New stool tests for colorectal cancer screening: a systematic review focusing on performance characteristics and practicalness,” International Journal of Cancer, vol. 117, no. 2, pp. 169–176, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. G. P. Young and L. J. W. Bosch, “Fecal tests: from blood to molecular markers,” Current Colorectal Cancer Reports, vol. 7, no. 1, pp. 62–70, 2011. View at Publisher · View at Google Scholar
  21. A. K. Rustgi, “Biochemical and genetic screening of colorectal cancer,” Gastroenterology, vol. 109, no. 3, pp. 1003–1005, 1995. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Loganayagam, “Faecal screening of colorectal cancer,” International Journal of Clinical Practice, vol. 62, no. 3, pp. 454–459, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. K. S. Tagore, M. J. Lawson, J. A. Yucaitis et al., “Sensitivity and specificity of a stool DNA multitarget assay panel for the detection of advanced colorectal neoplasia,” Clinical Colorectal Cancer, vol. 3, no. 1, pp. 47–53, 2003. View at Google Scholar · View at Scopus
  24. S. W. An, N. K. Kim, and H. C. Chung, “Genetic and epigenetic marker-based DNA test of stool is a promising approach for colorectal cancer screening,” Yonsei Medical Journal, vol. 50, no. 3, pp. 331–334, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. Z. Petko, M. Ghiassi, A. Shuber et al., “Aberrantly methylated CDKN2A, MGMT, and MLH1 in colon polyps and in fecal DNA from patients with colorectal polyps,” Clinical Cancer Research, vol. 11, no. 3, pp. 1203–1209, 2005. View at Google Scholar · View at Scopus
  26. M. Oberwalder, M. Zitt, C. Wöntner et al., “SFRP2 methylation in fecal DNA—a marker for colorectal polyps,” International Journal of Colorectal Disease, vol. 23, no. 1, pp. 15–19, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. D. Øgreid and E. Hamre, “Stool DNA analysis detects premorphological colorectal neoplasia: a case report,” European Journal of Gastroenterology and Hepatology, vol. 19, no. 8, pp. 725–727, 2007. View at Publisher · View at Google Scholar
  28. D. C. Chung, “Stool DNA testing and colon cancer prevention: another step forward,” Annals of Internal Medicine, vol. 149, no. 7, pp. 509–510, 2008. View at Google Scholar · View at Scopus
  29. Y. H. Baek, E. Chang, Y. J. Kim, B. K. Kim, J. H. Sohn, and D. I. Park, “Stool methylation-specific polymerase chain reaction assay for the detection of colorectal neoplasia in Korean patients,” Diseases of the Colon and Rectum, vol. 52, no. 8, pp. 1452–1459, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. N. K. Osborn and D. A. Ahlquist, “Stool screening for colorectal cancer: molecular approaches,” Gastroenterology, vol. 128, no. 1, pp. 192–206, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Sidransky, T. Tokino, S. R. Hamilton et al., “Identification of ras oncogene mutations in the stool of patients with curable colorectal tumors,” Science, vol. 256, no. 5053, pp. 102–105, 1992. View at Google Scholar · View at Scopus
  32. D. A. Ahlquist, J. E. Skoletsky, K. A. Boynton et al., “Colorectal cancer screening by detection of altered human DNA in stool: feasibility of a multitarget assay panel,” Gastroenterology, vol. 119, no. 5, pp. 1219–1227, 2000. View at Publisher · View at Google Scholar
  33. F. E. Ahmed, P. Vos, S. IJames et al., “Transcriptomic molecular markers for screening human colon cancer in stool and tissue,” Cancer Genomics and Proteomics, vol. 4, no. 1, pp. 1–20, 2007. View at Google Scholar · View at Scopus
  34. S. H. Itzkowitz, L. Jandorf, R. Brand et al., “Improved fecal DNA test for colorectal cancer screening,” Clinical Gastroenterology and Hepatology, vol. 5, no. 1, pp. 111–117, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Zou, J. Harrington, R. L. Rego, and D. A. Ahlquist, “A novel method to capture methylated human DNA from stool: implications for colorectal cancer screening,” Clinical Chemistry, vol. 53, no. 9, pp. 1646–1651, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. R. E. Brand, M. E. Ross, and A. P. Shuber, “Reproducibility of a multitarget stool-based DNA assay for colorectal cancer detection,” American Journal of Gastroenterology, vol. 99, no. 7, pp. 1338–1341, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. D. Calistri, C. Rengucci, R. Bocchini, L. Saragoni, W. Zoli, and D. Amadori, “Fecal multiple molecular tests to detect colorectal cancer in stool,” Clinical Gastroenterology and Hepatology, vol. 1, no. 5, pp. 377–383, 2003. View at Publisher · View at Google Scholar
  38. B. R. Doolittle, J. Emanuel, C. Tuttle, and J. Costa, “Detection of the mutated K-Ras biomarker in colorectal carcinoma,” Experimental and Molecular Pathology, vol. 70, no. 3, pp. 289–301, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. H. Zhang, X. Wang, Q. Ma, Z. Zhou, and J. Fang, “Rapid detection of low-abundance K-ras mutation in stools of colorectal cancer patients using chip-based temperature gradient capillary electrophoresis,” Laboratory Investigation, vol. 91, no. 5, pp. 788–798, 2011. View at Publisher · View at Google Scholar
  40. C. C. Chien, S. H. Chen, C. C. Liu et al., “Correlation of K-ras codon 12 mutations in human feces and ages of patients with colorectal cancer (CRC),” Translational Research, vol. 149, no. 2, pp. 96–102, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. C. Rengucci, P. Maiolo, L. Saragoni, W. Zoli, D. Amadori, and D. Calistri, “Multiple detection of genetic alterations in tumors and stool,” Clinical Cancer Research, vol. 7, no. 3, pp. 590–593, 2001. View at Google Scholar · View at Scopus
  42. M. Notarnicola, A. Cavallini, R. Cardone, F. Pezzolla, I. Demma, and A. Di Leo, “K-ras and p53 mutations in DNA extracted from colonic epithelial cells exfoliated in faeces of patients with colorectal cancer,” Digestive and Liver Disease, vol. 32, no. 2, pp. 131–136, 2000. View at Google Scholar · View at Scopus
  43. J. Smith-Ravin, J. England, I. C. Talbot, and W. Bodmer, “Detection of c-Ki-ras mutations in faecal samples from sporadic colorectal cancer patients,” Gut, vol. 36, no. 1, pp. 81–86, 1995. View at Google Scholar · View at Scopus
  44. U. Haug, T. Hillebrand, P. Bendzko et al., “Mutant-enriched PCR and allele-specific hybridization reaction to detect K-ras mutations in stool DNA: high prevalence in a large sample of older adults,” Clinical Chemistry, vol. 53, no. 4, pp. 787–790, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. W. Atkin and J. P. Martin, “Stool DNA-based colorectal cancer detection: finding the needle in the Haystack,” Journal of the National Cancer Institute, vol. 93, no. 11, pp. 798–799, 2001. View at Google Scholar · View at Scopus
  46. E. Villa, “Molecular screening for colon cancer detection,” Digestive and Liver Disease, vol. 32, no. 2, pp. 173–177, 2000. View at Google Scholar · View at Scopus
  47. A. I. Suceveanu, A. Suceveanu, F. Voinea, L. Mazilu, F. Mixici, and T. Adam, “Introduction of cytogenetic tests in colorectal cancer screening,” Journal of Gastrointestinal and Liver Diseases, vol. 18, no. 1, pp. 33–38, 2009. View at Google Scholar · View at Scopus
  48. G. Traverso, A. Shuber, B. Levin et al., “Detection of APC mutations in fecal DNA from patients with colorectal tumors,” New England Journal of Medicine, vol. 346, no. 5, pp. 311–320, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. C. J. Huang, C. C. Chien, S. H. Yang et al., “Faecal ribosomal protein L19 is a genetic prognostic factor for survival in colorectal cancer,” Journal of Cellular and Molecular Medicine, vol. 12, no. 5B, pp. 1936–1943, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. S. Lagerholm, S. Lagerholm, S. Dutta, and P. Nair, “Non-invasive detection of c-myc p64, c-myc p67 and c-erbb-2 in colorectal cancer,” Scandinavian Journal of Gastroenterology, vol. 40, no. 11, pp. 1343–1350, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. D. Calistri, C. Rengucci, C. Molinari et al., “Quantitative fluorescence determination of long-fragment DNA in stool as a marker for the early detection of colorectal cancer,” Cellular Oncology, vol. 31, no. 1, pp. 11–17, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. K. A. Boynton, I. C. Summerhayes, D. A. Ahlquist, and A. P. Shuber, “DNA integrity as a potential marker for stool-based detection of colorectal cancer,” Clinical Chemistry, vol. 49, no. 7, pp. 1058–1065, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. H. Zou, J. J. Harrington, K. K. Klatt, and D. A. Ahlquist, “A sensitive method to quantify human long DNA in stool: relevance to colorectal cancer screening,” Cancer Epidemiology Biomarkers and Prevention, vol. 15, no. 6, pp. 1115–1119, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. M. R. Abbaszadegan, A. Tavasoli, A. Velayati et al., “Stool-based DNA testing, a new noninvasive method for colorectal cancer screening, the first report from Iran,” World Journal of Gastroenterology, vol. 13, no. 10, pp. 1528–1533, 2007. View at Google Scholar · View at Scopus
  55. M. S. Kim, J. Lee, and D. Sidransky, “DNA methylation markers in colorectal cancer,” Cancer and Metastasis Reviews, vol. 29, no. 1, pp. 181–206, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Toyota and J. P. J. Issa, “CpG island methylator phenotgpes in aging and cancer,” Seminars in Cancer Biology, vol. 9, no. 5, pp. 349–357, 1999. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Toyota, N. Ahuja, M. Ohe-Toyota, J. G. Herman, S. B. Baylin, and J. P. J. Issa, “CpG island methylator phenotype in colorectal cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 15, pp. 8681–8686, 1999. View at Publisher · View at Google Scholar · View at Scopus
  58. T. Nagasaka, N. Tanaka, H. M. Cullings et al., “Analysis of fecal DNA methylation to detect gastrointestinal neoplasia,” Journal of the National Cancer Institute, vol. 101, no. 18, pp. 1244–1258, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. D. M. E. I. Hellebrekers, M. H. F. M. Lentjes, S. M. van den Bosch et al., “GATA4 and GATA5 are potential tumor suppressors and biomarkers in colorectal cancer,” Clinical Cancer Research, vol. 15, no. 12, pp. 3990–3997, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. M. Li, W. D. Chen, N. Papadopoulos et al., “Sensitive digital quantification of DNA methylation in clinical samples,” Nature Biotechnology, vol. 27, no. 9, pp. 858–863, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. R. Mayor, L. Casadomé, D. Azuara et al., “Long-range epigenetic silencing at 2q14.2 affects most human colorectal cancers and may have application as a non-invasive biomarker of disease,” British Journal of Cancer, vol. 100, no. 10, pp. 1534–1539, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. Z. Huang, L. Li, and J. Wang, “Hypermethylation of SFRP2 as a potential marker for stool-based detection of colorectal cancer and precancerous lesions,” Digestive Diseases and Sciences, vol. 52, no. 9, pp. 2287–2291, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. D. Tang, J. Liu, D. R. Wang, H. F. Yu, Y. K. Li, and J. Q. Zhang, “Diagnostic and prognostic value of the methylation status of secreted frizzledrelated protein 2 in colorectal cancer,” Clinical and Investigative Medicine, vol. 34, no. 2, pp. E88–E95, 2011. View at Google Scholar
  64. D. R. Wang and D. Tang, “Hypermethylated SFRP2 gene in fecal DNA is a high potential biomarker for colorectal cancer noninvasive screening,” World Journal of Gastroenterology, vol. 14, no. 4, pp. 524–531, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. H. M. Müller, M. Oberwalder, H. Fiegl et al., “Methylation changes in faecal DNA: a marker for colorectal cancer screening?” Lancet, vol. 363, no. 9417, pp. 1283–1285, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. R. M. Ned, S. Melillo, and M. Marrone, “Fecal DNA testing for colorectal cancer screening: the ColoSure test,” PLoS Currents, vol. 3, Article ID RNN1220, 2011. View at Google Scholar
  67. C. Ausch, Y. H. Kim, K. D. Tsuchiya et al., “Comparative analysis of PCR-based biomarker assay methods for colorectal polyp detection from fecal DNA,” Clinical Chemistry, vol. 55, no. 8, pp. 1559–1563, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. M. Kalimutho, S. Di Cecilia, G. Del Vecchio Blanco et al., “Epigenetically silenced miR-34b/c as a novel faecal-based screening marker for colorectal cancer,” British Journal of Cancer, vol. 104, no. 11, pp. 1770–1778, 2011. View at Publisher · View at Google Scholar
  69. M. S. Kim, J. Louwagie, B. Carvalho et al., “Promoter DNA methylation of Oncostatin M receptor-β as a novel diagnostic and therapeutic marker in colon cancer,” PLoS ONE, vol. 4, no. 8, Article ID e6555, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. J. P. Zhang, S. B. Yang, Y. Y. Xiw, X. Y. Chen, Y. Z. D. He, and J. S. Li, “Detection of methylated tissue factor pathway inhibitor 2 and human long DNA in fecal samples of patients with colorectal cancer in China,” Cancer Epidemiology. In press.
  71. V. Melotte, M. H. F. M. Lentjes, S. M. van den Bosch et al., “N-Myc downstream-regulated gene 4 (NDRG4): a candidate tumor suppressor gene and potential biomarker for colorectal cancer,” Journal of the National Cancer Institute, vol. 101, no. 13, pp. 916–927, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. W. Zhang, M. Bauer, R. S. Croner et al., “DNA stool test for colorectal cancer: hypermethylation of the secreted frizzled-related protein-1 gene,” Diseases of the Colon and Rectum, vol. 50, no. 10, pp. 1618–1626, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. D. A. Ahlquist, “Molecular stool screening for colorectal cancer. Using DNA markers may be beneficial, but large scale evaluation is needed,” British Medical Journal, vol. 321, no. 7256, pp. 254–255, 2000. View at Google Scholar
  74. D. Azuara, F. Rodriguez-Moranta, J. de Oca et al., “Novel methylation panel for the early detection of colorectal tumors in stool DNA,” Clinical Colorectal Cancer, vol. 9, no. 3, pp. 168–176, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. B. M. Berger, L. Robison, and J. Glickman, “Colon cancer-associated DNA mutations: marker selection for the detection of proximal colon cancer,” Diagnostic Molecular Pathology, vol. 12, no. 4, pp. 187–192, 2003. View at Publisher · View at Google Scholar · View at Scopus
  76. B. M. Berger, B. M. Vucson, and J. S. Ditelberg, “Gene mutations in advanced colonic polyps: potential marker selection for stool-based mutated human DNA assays for colon cancer screening,” Clinical Colorectal Cancer, vol. 3, no. 3, pp. 180–185, 2003. View at Google Scholar · View at Scopus
  77. T. F. Imperiale, D. F. Ransohoff, S. H. Itzkowitz, B. A. Turnbull, and M. E. Ross, “Fecal DNA versus fecal occult blood for colorectal-cancer screening in an average-risk population,” New England Journal of Medicine, vol. 351, no. 26, pp. 2704–2714, 2004. View at Publisher · View at Google Scholar · View at Scopus
  78. S. Syngal, E. Stoffel, D. Chung et al., “Detection of stool DNA mutations before and after treatment of colorectal neoplasia,” Cancer, vol. 106, no. 2, pp. 277–283, 2006. View at Publisher · View at Google Scholar · View at Scopus
  79. B. M. Berger, P. C. Schroy III, J. L. Rosenberg et al., “Colorectal cancer screening using stool DNA analysis in clinical practice: early clinical experience with respect to patient acceptance and colonoscopic follow-up of abnormal tests,” Clinical Colorectal Cancer, vol. 5, no. 5, pp. 338–343, 2006. View at Google Scholar · View at Scopus
  80. H. Matsushita, Y. Matsumura, Y. Moriya et al., “A new method for isolating colonocytes from naturally evacuated feces and its clinical application to colorectal cancer diagnosis,” Gastroenterology, vol. 129, no. 6, pp. 1918–1927, 2005. View at Publisher · View at Google Scholar · View at Scopus
  81. D. A. Ahlquist, D. J. Sargent, C. L. Loprinzi et al., “Stool DNA and occult blood testing for screen detection of colorectal neoplasia,” Annals of Internal Medicine, vol. 149, no. 7, pp. 441–450, 2008. View at Google Scholar · View at Scopus
  82. S. M. Dong, G. Traverso, C. Johnson et al., “Detecting colorectal cancer in stool with the use of multiple genetic targets,” Journal of the National Cancer Institute, vol. 93, no. 11, pp. 858–865, 2001. View at Google Scholar · View at Scopus
  83. N. Kutzner, I. Hoffmann, C. Linke et al., “Non-invasive detection of colorectal tumours by the combined application of molecular diagnosis and the faecal occult blood test,” Cancer Letters, vol. 229, no. 1, pp. 33–41, 2005. View at Publisher · View at Google Scholar · View at Scopus
  84. W. K. Leung, K. F. To, E. P. S. Man et al., “Detection of hypermethylated DNA or cyclooxygenase-2 messenger rna in fecal samples of patients with colorectal cancer or polyps,” American Journal of Gastroenterology, vol. 102, no. 5, pp. 1070–1076, 2007. View at Publisher · View at Google Scholar · View at Scopus
  85. E. Chang, D. I. Park, Y. J. Kim et al., “Detection of colorectal neoplasm using promoter methylation of ITGA4, SFRP2, and p16 in stool samples: a preliminary report in Korean patients,” Hepato-Gastroenterology, vol. 57, no. 101, pp. 720–727, 2010. View at Google Scholar · View at Scopus
  86. B. Greenwald, “The stool DNA test: an emerging technology in colorectal cancer screening,” Gastroenterology Nursing, vol. 28, no. 1, pp. 28–32, 2005. View at Google Scholar · View at Scopus
  87. B. J. Starkey, “Screening for colorectal cancer,” Annals of Clinical Biochemistry, vol. 39, no. 4, pp. 351–365, 2002. View at Publisher · View at Google Scholar