Table of Contents Author Guidelines Submit a Manuscript
Gastroenterology Research and Practice
Volume 2012 (2012), Article ID 615051, 9 pages
http://dx.doi.org/10.1155/2012/615051
Research Article

Bifidobacterium animalis ssp. lactis 420 Protects against Indomethacin-Induced Gastric Permeability in Rats

1DuPont Nutrition and Health, Kantvik Active Nutrition, Sokeritehtaantie 20, 02460 Kantvik, Finland
2Toxis, SBW Corp. Ltd., Lemminkäisenkatu 14-18 C, 20520 Turku, Finland

Received 30 December 2011; Revised 30 March 2012; Accepted 2 May 2012

Academic Editor: Emidio Scarpellini

Copyright © 2012 Anna Lyra et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Matsui, O. Shimokawa, T. Kaneko, Y. Nagano, K. Rai, and I. Hyodo, “The pathophysiology of non-steroidal anti-inflammatory drug (NSAID)-induced mucosal injuries in stomach and small intestine,” Journal of Clinical Biochemistry and Nutrition, vol. 48, no. 2, pp. 107–111, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. Z. A. Radi and N. K. Khan, “Effects of cyclooxygenase inhibition on the gastrointestinal tract,” Experimental and Toxicologic Pathology, vol. 58, no. 2-3, pp. 163–173, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Somasundaram, G. Sigthorsson, R. J. Simpson et al., “Uncoupling of intestinal mitochondrial oxidative phosphorylation and inhibition of cyclooxygenase are required for the development of NSAID-enteropathy in the rat,” Alimentary Pharmacology and Therapeutics, vol. 14, no. 5, pp. 639–650, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Laine, R. Smith, K. Min, C. Chen, and R. W. Dubois, “Systematic review: the lower gastrointestinal adverse effects of non-steroidal anti-inflammatory drugs,” Alimentary Pharmacology and Therapeutics, vol. 24, no. 5, pp. 751–767, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. L. Laine, S. P. Curtis, B. Cryer, A. Kaur, and C. P. Cannon, “Assessment of upper gastrointestinal safety of etoricoxib and diclofenac in patients with osteoarthritis and rheumatoid arthritis in the Multinational Etoricoxib and Diclofenac Arthritis Long-term (MEDAL) programme: a randomised comparison,” The Lancet, vol. 369, no. 9560, pp. 465–473, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Laine, S. P. Curtis, B. Cryer, A. Kaur, and C. P. Cannon, “Risk factors for NSAID-associated upper GI clinical events in a long-term prospective study of 34 701 arthritis patients,” Alimentary Pharmacology and Therapeutics, vol. 32, no. 10, pp. 1240–1248, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Somasundaram, H. Hayllar, S. Rafi, J. M. Wrigglesworth, A. J. S. Macpherson, and I. Bjarnason, “The biochemical basis of non-steroidal anti-inflammatory drug-induced damage to the gastrointestinal tract: a review and a hypothesis,” Scandinavian Journal of Gastroenterology, vol. 30, no. 4, pp. 289–299, 1995. View at Google Scholar · View at Scopus
  8. M. Uejima, T. Kinouchi, K. Kataoka, I. Hiraoka, and Y. Ohnishi, “Role of intestinal bacteria in ileal ulcer formation in rats treated with a nonsteroidal antiinflammatory drug,” Microbiology and Immunology, vol. 40, no. 8, pp. 553–560, 1996. View at Google Scholar · View at Scopus
  9. T. Kinouchi, K. Kataoka, S. R. Bing et al., “Culture supernatants of Lactobacillus acidophilus and Bifidobacterium adolescentis repress ileal ulcer formation in rats treated with a nonsteroidal antiinflammatory drug by suppressing unbalanced growth of aerobic bacteria and lipid peroxidation,” Microbiology and Immunology, vol. 42, no. 5, pp. 347–355, 1998. View at Google Scholar · View at Scopus
  10. H. Mäkivuokko, K. Tiihonen, S. Tynkkynen, L. Paulin, and N. Rautonen, “The effect of age and non-steroidal anti-inflammatory drugs on human intestinal microbiota composition,” British Journal of Nutrition, vol. 103, no. 2, pp. 227–234, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Kassinen, L. Krogius-Kurikka, H. Mäkivuokko et al., “The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects,” Gastroenterology, vol. 133, no. 1, pp. 24–33, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. W. E. C. Moore and L. H. Moore, “Intestinal floras of populations that have a high risk of colon cancer,” Applied and Environmental Microbiology, vol. 61, no. 9, pp. 3202–3207, 1995. View at Google Scholar · View at Scopus
  13. M. Gotteland, S. Cruchet, and S. Verbeke, “Effect of Lactobacillus ingestion on the gastrointestinal mucosal barrier alterations induced by indometacin in humans,” Alimentary Pharmacology and Therapeutics, vol. 15, no. 1, pp. 11–17, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Montalto, A. Gallo, V. Curigliano et al., “Clinical trial: the effects of a probiotic mixture on non-steroidal anti-inflammatory drug enteropathy—a randomized, double-blind, cross-over, placebo-controlled study,” Alimentary Pharmacology and Therapeutics, vol. 32, no. 2, pp. 209–214, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. Fao/Who, “Guidelines for the evaluation of probiotics in food,” Joint FAO/WHO Working Group Report on Drafting for the Evaluation of Probiotics in Food, Fao/Who, Ontario, Canada, 2002. View at Google Scholar
  16. C. L. Ohland and W. K. MacNaughton, “Probiotic bacteria and intestinal epithelial barrier function,” American Journal of Physiology, vol. 298, no. 6, pp. G807–G819, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Kajander, E. Myllyluoma, M. Rajilić-Stojanović et al., “Clinical trial: multispecies probiotic supplementation alleviates the symptoms of irritable bowel syndrome and stabilizes intestinal microbiota,” Alimentary Pharmacology and Therapeutics, vol. 27, no. 1, pp. 48–57, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. C. S. Eun, Y. S. Kim, D. S. Han, J. H. Choi, A. R. Lee, and Y. K. Park, “Lactobacillus casei prevents impaired barrier function in intestinal epithelial cells,” APMIS, vol. 119, no. 1, pp. 49–56, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Watanabe, H. Nishio, T. Tanigawa et al., “Probiotic Lactobacillus casei strain Shirota prevents indomethacin-induced small intestinal injury: involvement of lactic acid,” American Journal of Physiology, vol. 297, no. 3, pp. G506–G513, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Şenol, M. Işler, A. G. Karahan et al., “Effect of probiotics on aspirin-induced gastric mucosal lesions,” Turkish Journal of Gastroenterology, vol. 22, no. 1, pp. 18–26, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Björklund, A. C. Ouwehand, S. D. Forssten et al., “Gut microbiota of healthy elderly NSAID users is selectively modified with the administration of Lactobacillus acidophilus NCFM and lactitol,” Age. In press.
  22. A. C. Ouwehand, K. Tiihonen, M. Saarinen, H. Putaala, and N. Rautonen, “Influence of a combination of Lactobacillus acidophilus NCFM and lactitol on healthy elderly: intestinal and immune parameters,” British Journal of Nutrition, vol. 101, no. 3, pp. 367–375, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Kamil, M. S. Geier, R. N. Butler, and G. S. Howarth, “Lactobacillus rhamnosus GG exacerbates intestinal ulceration in a model of indomethacin-induced enteropathy,” Digestive Diseases and Sciences, vol. 52, no. 5, pp. 1247–1252, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. J. T. Nurmi, P. A. Puolakkainen, and N. E. Rautonen, “Bifidobacterium lactis sp. 420 up-regulates cyclooxygenase (Cox)-1 and down-regulates Cox-2 gene expression in a caco-2 cell culture model,” Nutrition and Cancer, vol. 51, no. 1, pp. 83–92, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Putaala, T. Salusjärvi, M. Nordström et al., “Effect of four probiotic strains and Escherichia coli O157:H7 on tight junction integrity and cyclo-oxygenase expression,” Research in Microbiology, vol. 159, no. 9-10, pp. 692–698, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. D. M. Commane, C. T. Shortt, S. Silvi, A. Cresci, R. M. Hughes, and I. R. Rowland, “Effects of fermentation products of pro- and prebiotics on trans-epithelial electrical resistance in an in vitro model of the colon,” Nutrition and Cancer, vol. 51, no. 1, pp. 102–109, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. J. B. Meddings and I. Gibbons, “Discrimination of site-specific alterations in gastrointestinal permeability in the rat,” Gastroenterology, vol. 114, no. 1, pp. 83–92, 1998. View at Publisher · View at Google Scholar · View at Scopus
  28. M. C. Arrieta, L. Bistritz, and J. B. Meddings, “Alterations in intestinal permeability,” Gut, vol. 55, no. 10, pp. 1512–1520, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. J. H. A. Apajalahti, H. Kettunen, A. Kettunen et al., “Culture-independent microbial community analysis reveals that inulin in the diet primarily affects previously unknown bacteria in the mouse cecum,” Applied and Environmental Microbiology, vol. 68, no. 10, pp. 4986–4995, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. L. X. Sang, B. Chang, W. L. Zhang, X. M. Wu, X. H. Li, and M. Jiang, “Remission induction and maintenance effect of probiotics on ulcerative colitis: a meta-analysis,” World Journal of Gastroenterology, vol. 16, no. 15, pp. 1908–1915, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Kunes, J. Kvetina, and J. Bures, “Type and distribution of indomethacin-induced lesions in the gastrointestinal tract of rat,” Neuroendocrinology Letters, vol. 30, supplement 1, pp. 96–100, 2009. View at Google Scholar · View at Scopus
  32. C. L. Santos, B. A. Medeiros, R. C. Palheta et al., “Cyclooxygenase-2 inhibition increases gastric tone and delays gastric emptying in rats,” Neurogastroenterology and Motility, vol. 19, no. 3, pp. 225–232, 2007. View at Publisher · View at Google Scholar · View at Scopus