Table of Contents Author Guidelines Submit a Manuscript
Gastroenterology Research and Practice
Volume 2013, Article ID 109759, 7 pages
http://dx.doi.org/10.1155/2013/109759
Research Article

LEPREL1 Expression in Human Hepatocellular Carcinoma and Its Suppressor Role on Cell Proliferation

1Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
2Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China

Received 1 August 2013; Revised 1 October 2013; Accepted 2 October 2013

Academic Editor: Chunping Jiang

Copyright © 2013 Jianguo Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Yang, Y.-M. Liu, M.-Y. Wei et al., “The liver tissue bank and clinical database in China,” Frontiers of Medicine in China, vol. 4, no. 4, pp. 443–447, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. N. Fares and J. M. Peron, “Epidemiology, natural history, and risk factors of hepatocellular carcinoma,” La Revue du Praticien, vol. 63, no. 2, pp. 216–222, 2013. View at Google Scholar
  3. K. Inoue, T. Takayama, T. Higaki, Y. Watanabe, and M. Makuuchi, “Clinical significance of early hepatocellular carcinoma,” Liver Transplantation, vol. 10, no. 2, supplement 1, pp. S16–S19, 2004. View at Google Scholar · View at Scopus
  4. H. B. El-Serag and K. L. Rudolph, “Hepatocellular carcinoma: epidemiology and molecular carcinogenesis,” Gastroenterology, vol. 132, no. 7, pp. 2557–2576, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. S.-S. Zheng, X. Xu, J. Wu et al., “Liver transplantation for hepatocellular carcinoma: hangzhou experiences,” Transplantation, vol. 85, no. 12, pp. 1726–1732, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. P. A. Farazi and R. A. DePinho, “Hepatocellular carcinoma pathogenesis: from genes to environment,” Nature Reviews Cancer, vol. 6, no. 9, pp. 674–687, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Villanueva, P. Newell, D. Y. Chiang, S. L. Friedman, and J. M. Llovet, “Genomics and signaling pathways in hepatocellular carcinoma,” Seminars in Liver Disease, vol. 27, no. 1, pp. 55–76, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. J. G. Herman and S. B. Baylin, “Gene silencing in cancer in association with promoter hypermethylation,” The New England Journal of Medicine, vol. 349, no. 21, pp. 2042–2054, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Liu, Z. Lian, S. Han et al., “Downregulation of E-cadherin by hepatitis B virus X antigen in hepatocellullar carcinoma,” Oncogene, vol. 25, no. 7, pp. 1008–1017, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Kubo, J. Yamamoto, Y. Shikauchi, Y. Niwa, K. Matsubara, and H. Yoshikawa, “Apoptotic speck protein-like, a highly homologous protein to apoptotic speck protein in the pyrin domain, is silenced by DNA methylation and induces apoptosis in human hepatocellular carcinoma,” Cancer Research, vol. 64, no. 15, pp. 5172–5177, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Järnum, C. Kjellman, A. Darabi, I. Nilsson, K. Edvardsen, and P. Åman, “LEPREL1, a novel ER and Golgi resident member of the Leprecan family,” Biochemical and Biophysical Research Communications, vol. 317, no. 2, pp. 342–351, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. P. I. Tiainen, A. Pasanen, R. Sormunen, and J. Myllyharju, “Characterization of recombinant human prolyl 3-hydroxylase isoenzyme 2, an enzyme modifying the basement membrane collagen IV,” Journal of Biological Chemistry, vol. 283, no. 28, pp. 19432–19439, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Shah, P. Smith, C. Purdie et al., “The prolyl 3-hydroxylases P3H2 and P3H3 are novel targets for epigenetic silencing in breast cancer,” British Journal of Cancer, vol. 100, no. 10, pp. 1687–1696, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. F. Zhu, L. Jin, T.-P. Luo, G.-H. Luo, Y. Tan, and X.-H. Qin, “Serine protease HtrA1 expression in human hepatocellular carcinoma,” Hepatobiliary and Pancreatic Diseases International, vol. 9, no. 5, pp. 508–512, 2010. View at Google Scholar · View at Scopus
  15. J. A. Vranka, L. Y. Sakai, and H. P. Bächinger, “Prolyl 3-hydroxylase 1, enzyme characterization and identification of a novel family of enzymes,” Journal of Biological Chemistry, vol. 279, no. 22, pp. 23615–23621, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Kalluri, “Basement membranes: structure, assembly and role in tumour angiogenesis,” Nature Reviews Cancer, vol. 3, no. 6, pp. 422–433, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Ikeda, K.-I. Iyama, N. Ishikawa et al., “Loss of expression of type IV collagen α5 and α6 chains in colorectal cancer associated with the hypermethylation of their promoter region,” American Journal of Pathology, vol. 168, no. 3, pp. 856–865, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Espinosa Neira and E. P. Salazar, “Native type IV collagen induces an epithelial to mesenchymal transition-like process in mammary epithelial cells MCF10A,” The International Journal of Biochemistry & Cell Biology, vol. 44, no. 12, pp. 2194–2203, 2012. View at Google Scholar
  19. R. A. Irizarry, C. Ladd-Acosta, B. Wen et al., “The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores,” Nature Genetics, vol. 41, no. 2, pp. 178–186, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. J.-P. Issa, “CpG island methylator phenotype in cancer,” Nature Reviews Cancer, vol. 4, no. 12, pp. 988–993, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Matsuzaki, G. Deng, H. Tanaka, S. Kakar, S. Miura, and Y. S. Kim, “The relationship between global methylation level, loss of heterozygosity, and microsatellite instability in sporadic colorectal cancer,” Clinical Cancer Research, vol. 11, no. 24, part 1, pp. 8564–8569, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Zhong, M. W. Tang, W. Yeo, C. Liu, Y. M. D. Lo, and P. J. Johnson, “Silencing of GSTP1 gene by CpG island DNA hypermethylation in HBV-associated hepatocellular carcinomas,” Clinical Cancer Research, vol. 8, no. 4, pp. 1087–1092, 2002. View at Google Scholar · View at Scopus
  23. T. Moribe, N. Iizuka, T. Miura et al., “Methylation of multiple genes as molecular markers for diagnosis of a small, well-differentiated hepatocellular carcinoma,” International Journal of Cancer, vol. 125, no. 2, pp. 388–397, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. D.-H. Park, J. W. Shin, S.-K. Park et al., “Diethylnitrosamine (DEN) induces irreversible hepatocellular carcinogenesis through overexpression of G1/S-phase regulatory proteins in rat,” Toxicology Letters, vol. 191, no. 2-3, pp. 321–326, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. J. H. Noh, K. H. Jung, J. K. Kim et al., “Aberrant regulation of HDAC2 mediates proliferation of hepatocellular carcinoma cells by deregulating expression of G1/S cell cycle proteins,” PLoS One, vol. 6, no. 11, Article ID e28103, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. C. J. Sherr, “G1 phase progression: cycling on cue,” Cell, vol. 79, no. 4, pp. 551–555, 1994. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Borriello, V. Cucciolla, A. Oliva, V. Zappia, and F. Della Ragione, “p27Kip1 metabolism: a fascinating labyrinth,” Cell Cycle, vol. 6, no. 9, pp. 1053–1061, 2007. View at Google Scholar · View at Scopus
  28. K. Kimura, M. Hirano, R. Kobayashi, and T. Hirano, “Phosphorylation and activation of 13S condensin by Cdc2 in vitro,” Science, vol. 282, no. 5388, pp. 487–490, 1998. View at Publisher · View at Google Scholar · View at Scopus