Table of Contents Author Guidelines Submit a Manuscript
Gastroenterology Research and Practice
Volume 2014, Article ID 376367, 7 pages
http://dx.doi.org/10.1155/2014/376367
Review Article

Endoscopic Optical Coherence Tomography (OCT): Advances in Gastrointestinal Imaging

1Department of Medicine, Washington Hospital Center, 110 Irving St NW, Washington, DC 20010, USA
2Division of Gastroenterology, University of Florida, 1600 SW Archer Road, P.O. Box 100214, Gainesville, FL 32610, USA

Received 27 September 2013; Accepted 21 December 2013; Published 26 February 2014

Academic Editor: Horia Stefãnescu

Copyright © 2014 Tejas S. Kirtane and Mihir S. Wagh. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. M. Song, D. G. Adler, J. D. Conway et al., “Narrow band imaging and multiband imaging,” Gastrointestinal Endoscopy, vol. 67, no. 4, pp. 581–589, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Neumann, R. Kiesslich, M. B. Wallace, and M. F. Neurath, “Confocal laser endomicroscopy: technical advances and clinical applications,” Gastroenterology, vol. 139, no. 2, pp. 388.e2–392.e2, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, S. A. Boppart, and J. G. Fujimoto, “Optical biopsy in human gastrointestinal tissue using optical coherence tomography,” American Journal of Gastroenterology, vol. 92, no. 10, pp. 1800–1804, 1997. View at Google Scholar · View at Scopus
  4. D. Huang, E. A. Swanson, C. P. Lin et al., “Optical coherence tomography,” Science, vol. 254, no. 5035, pp. 1178–1181, 1991. View at Google Scholar · View at Scopus
  5. D. C. Adler, C. Zhou, T. Tsai et al., “Three-dimensional endomicroscopy of the human colon using optical coherence tomography,” Optics Express, vol. 17, no. 2, pp. 784–786, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Wang, J. S. Nelson, Z. Chen, B. J. Reiser, R. S. Chuck, and R. S. Windeler, “Optimal wavelength for ultrahigh-resolution optical coherence tomography,” Optics Express, vol. 11, no. 12, pp. 1411–1417, 2003. View at Google Scholar · View at Scopus
  7. M. E. Brezinski and J. G. Fujimoto, “Optical coherence tomography: high-resolution imaging in nontransparent tissue,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 5, no. 4, pp. 1185–1192, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia, vol. 2, no. 1-2, pp. 9–25, 2000. View at Google Scholar · View at Scopus
  9. J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nature Biotechnology, vol. 21, no. 11, pp. 1361–1367, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. A. M. Sergeev, V. M. Gelikonov, G. V. Gelikonov et al., “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Optics Express, vol. 1, no. 13, pp. 432–440, 1997. View at Google Scholar · View at Scopus
  11. J. Ortiz-Fernandez-Sordo, A. Parra-Blanco, A. Garcia-Varona et al., “Endoscopic resection techniques and ablative therapies for Barrett's neoplasia,” World Journal of Gastrointestinal Endoscopy, vol. 3, no. 9, pp. 171–182, 2011. View at Google Scholar
  12. A. Das, M. V. Sivak Jr., A. Chak et al., “High-resolution endoscopic imaging of the GI tract: a comparative study of optical coherence tomography versus high-frequency catheter probe EUS,” Gastrointestinal Endoscopy, vol. 54, no. 2, pp. 219–224, 2001. View at Google Scholar · View at Scopus
  13. J.-F. Fléjou, “Barrett's oesophagus: from metaplasia to dysplasia and cancer,” Gut, vol. 54, supplement 1, pp. i6–i12, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. S. S. Devesa, W. J. Blot, and J. F. Fraumeni Jr., “Changing patterns in the incidence of esophageal and gastric carcinoma in the United States,” Cancer, vol. 83, no. 10, pp. 2049–2053, 1998. View at Google Scholar
  15. N. Shaheen and D. F. Ransohoff, “Gastroesophageal reflux, Barrett esophagus, and esophageal cancer: clinical applications,” Journal of the American Medical Association, vol. 287, no. 15, pp. 1982–1986, 2002. View at Google Scholar · View at Scopus
  16. Y. Chen, A. D. Aguirre, P.-L. Hsiung et al., “Ultrahigh resolution optical coherence tomography of Barrett's esophagus: preliminary descriptive clinical study correlating images with histology,” Endoscopy, vol. 39, no. 7, pp. 599–605, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Isenberg, M. V. Sivak Jr., A. Chak et al., “Accuracy of endoscopic optical coherence tomography in the detection of dysplasia in Barrett's esophagus: a prospective, double-blinded study,” Gastrointestinal Endoscopy, vol. 62, no. 6, pp. 825–831, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Zhou, T. Tsai, H. Lee et al., “Characterization of buried glands before and after radiofrequency ablation by using 3-dimensional optical coherence tomography (with videos),” Gastrointestinal Endoscopy, vol. 76, no. 1, pp. 32–40, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Zhou, T. Kirtane, T. Tsai et al., “Three-dimensional endoscopic optical coherence tomography imaging of cervical inlet patch,” Gastrointestinal Endoscopy, vol. 75, no. 3, pp. 675–677, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Zhou, T. Kirtane, T. H. Tsai et al., “Cervical inlet patch-optical coherence tomography imaging and clinical significance,” World Journal of Gastroenterology, vol. 18, no. 20, pp. 2502–2510, 2012. View at Google Scholar
  21. J. Chennat, A. S. Ross, V. J. A. Konda et al., “Advanced pathology under squamous epithelium on initial EMR specimens in patients with Barrett's esophagus and high-grade dysplasia or intramucosal carcinoma: implications for surveillance and endotherapy management,” Gastrointestinal Endoscopy, vol. 70, no. 3, pp. 417–421, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Anders, Y. Lucks, M. A. El-Masry et al., “Subsquamous extension of intestinal metaplasia is detected in 98% of cases of neoplastic Barrett's esophagus,” Clinical Gastroenterology and Hepatology, 2013. View at Publisher · View at Google Scholar
  23. N. A. Gray, R. D. Odze, and S. J. Spechler, “Buried metaplasia after endoscopic ablation of Barrett's esophagus: a systematic review,” American Journal of Gastroenterology, vol. 106, no. 11, pp. 1899–1909, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Titi, A. Overhiser, O. Ulusarac et al., “Development of subsquamous high-grade dysplasia and adenocarcinoma after successful radiofrequency ablation of Barrett's esophagus,” Gastroenterology, vol. 143, no. 3, pp. 564.e1–566.e1, 2012. View at Google Scholar
  25. N. Gupta, S. C. Mathur, J. A. Dumot et al., “Adequacy of esophageal squamous mucosa specimens obtained during endoscopy: are standard biopsies sufficient for postablation surveillance in Barrett's esophagus?” Gastrointestinal Endoscopy, vol. 75, no. 1, pp. 11–18, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. D. C. Adler, C. Zhou, T.-H. Tsai et al., “Three-dimensional optical coherence tomography of Barretts esophagus and buried glands beneath neosquamous epithelium following radiofrequency ablation,” Endoscopy, vol. 41, no. 9, pp. 773–776, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. T. H. Tsai, C. Zhou, Y. K. Tao et al., “Structural markers observed with endoscopic 3-dimensional optical coherence tomography correlating with Barrett's esophagus radiofrequency ablation treatment response (with videos),” Gastrointestinal Endoscopy, vol. 76, no. 6, pp. 1104–1112, 2012. View at Google Scholar
  28. T. H. Tsai, C. Zhou, H. C. Lee et al., “Comparison of tissue architectural changes between radiofrequency ablation and cryospray ablation in Barrett's esophagus using endoscopic three-dimensional optical coherence tomography,” Gastroenterology Research and Practice, vol. 2012, Article ID 684832, 8 pages, 2012. View at Publisher · View at Google Scholar
  29. E. Masci, B. Mangiavillano, L. Albarello, A. Mariani, C. Doglioni, and P. A. Testoni, “Optical coherence tomography in the diagnosis of coeliac disease: a preliminary report,” Gut, vol. 55, no. 4, p. 579, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. V. X. D. Yang, S. Tang, M. L. Gordon et al., “Endoscopic Doppler optical coherence tomography in the human GI tract: initial experience,” Gastrointestinal Endoscopy, vol. 61, no. 7, pp. 879–890, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. P. R. Pfau, M. V. Sivak Jr., A. Chak et al., “Criteria for the diagnosis of dysplasia by endoscopic optical coherence tomography,” Gastrointestinal Endoscopy, vol. 58, no. 2, pp. 196–202, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. P. Consolo, G. Strangio, C. Luigiano, G. Giacobbe, S. Pallio, and L. Familiari, “Optical coherence tomography in inflammatory bowel disease: prospective evaluation of 35 patients,” Diseases of the Colon and Rectum, vol. 51, no. 9, pp. 1374–1380, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. L. Familiari, G. Strangio, P. Consolo et al., “Optical coherence tomography evaluation of ulcerative colitis: the patterns and the comparison with histology,” American Journal of Gastroenterology, vol. 101, no. 12, pp. 2833–2840, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. B. Shen and G. Zuccaro Jr., “Optical coherence tomography in the gastrointestinal tract,” Gastrointestinal Endoscopy Clinics of North America, vol. 14, no. 3, pp. 555–571, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. D. C. Adler, C. Zhou, T. Tsai et al., “Three-dimensional endomicroscopy of the human colon using optical coherence tomography,” Optics Express, vol. 17, no. 2, pp. 784–796, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Zhou, D. C. Adler, L. Becker et al., “Effective treatment of chronic radiation proctitis using radiofrequency ablation,” Therapeutic Advances in Gastroenterology, vol. 2, no. 3, pp. 149–156, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. B. Shen, G. Zuccaro Jr., T. L. Gramlich et al., “In vivo colonoscopic optical coherence tomography for transmural inflammation in inflammatory bowel disease,” Clinical Gastroenterology and Hepatology, vol. 2, no. 12, pp. 1080–1087, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. U. Seitz, J. Freund, S. Jaeckle et al., “First in vivo optical coherence tomography in the human bile duct,” Endoscopy, vol. 33, no. 12, pp. 1018–1021, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. P. A. Testoni and B. Mangiavillano, “Optical coherence tomography for bile and pancreatic duct imaging,” Gastrointestinal Endoscopy Clinics of North America, vol. 19, no. 4, pp. 637–653, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. M. de Bellis, S. Sherman, E. L. Fogel et al., “Tissue sampling at ERCP in suspected malignant biliary strictures (Part 2),” Gastrointestinal Endoscopy, vol. 56, no. 5, pp. 720–730, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Arvanitakis, L. Hookey, G. Tessier et al., “Intraductal optical coherence tomography during endoscopic retrograde cholangiopancreatography for investigation of biliary strictures,” Endoscopy, vol. 41, no. 8, pp. 696–701, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. P. A. Testoni, A. Mariani, B. Mangiavillano, P. G. Arcidiacono, S. Di Pietro, and E. Masci, “Intraductal optical coherence tomography for investigating main pancreatic duct strictures,” American Journal of Gastroenterology, vol. 102, no. 2, pp. 269–274, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. X. Qi, Y. Pan, M. V. Sivak, J. E. Willis, G. Isenberg, and A. M. Rollins, “Image analysis for classification of dysplasia in Barrett's esophagus using endoscopic optical coherence tomography,” Biomedical Optics Express, vol. 1, no. 3, pp. 825–847, 2010. View at Google Scholar