Table of Contents
Hepatitis Research and Treatment
Volume 2010 (2010), Article ID 248157, 10 pages
http://dx.doi.org/10.1155/2010/248157
Review Article

Xenobiotic Exposure and Autoimmune Hepatitis

Arkansas Children's Hospital Research Institute, University of Arkansas for Medical Sciences, 13 Children's Way, Little Rock, AR 72202, USA

Received 10 September 2010; Accepted 9 November 2010

Academic Editor: William Irving

Copyright © 2010 Kathleen M. Gilbert. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Yoshioka, M. Mizuno, Y. Morisue et al., “Anti-asialoglycoprotein receptor autoantibodies, detected by a capture-immunoassay, are associated with autoimmune liver diseases,” Acta Medica Okayama, vol. 56, no. 2, pp. 99–105, 2002. View at Google Scholar · View at Scopus
  2. Y. Ma, J. Gaken, B. M. McFarlane et al., “Alcohol dehydrogenase: a target of humoral autoimmune response in liver disease,” Gastroenterology, vol. 112, no. 2, pp. 483–492, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. E. L. Krawitt, “Autoimmune hepatitis,” New England Journal of Medicine, vol. 354, no. 1, pp. 54–66, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Gueguen, M. Meunier-Rotival, O. Bernard, and F. Alvarez, “Anti-liver kidney microsome antibody recognizes a cytochrome P450 from the IID subfamily,” Journal of Experimental Medicine, vol. 168, no. 2, pp. 801–806, 1988. View at Google Scholar · View at Scopus
  5. H. F. Lohr, J. F. Schlaak, G. Gerken, B. Fleischer, H. P. Dienes, and K. H. Meyer zum Buschenfelde, “Phenotypical analysis and cytokine release of liver-infiltrating and peripheral blood T lymphocytes from patients with chronic hepatitis of different etiology,” Liver, vol. 14, no. 3, pp. 161–166, 1994. View at Google Scholar · View at Scopus
  6. A. Tanaka, S. Iwabuchi, M. Takatori et al., “Clonotypic analysis of T cells in patients with autoimmune and viral hepatitis,” Hepatology, vol. 25, no. 5, pp. 1070–1076, 1997. View at Google Scholar · View at Scopus
  7. Y. Ichiki, C. A. Aoki, C. L. Bowlus, S. Shimoda, H. Ishibashi, and M. E. Gershwin, “T cell immunity in autoimmune hepatitis,” Autoimmunity Reviews, vol. 4, no. 5, pp. 315–321, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. LI. Wen, Y. Ma, D. P. Bogdanos et al., “Pédiatrie autoimmune liver diseases: the molecular basis of humoral and cellular immunity,” Current Molecular Medicine, vol. 1, no. 3, pp. 379–389, 2001. View at Google Scholar · View at Scopus
  9. H. Lohr, M. Manns, A. Kyriatsoulis et al., “Clonal analysis of liver-infiltrating T cells in patients with LKM-1 antibody-positive autoimmune chronic active hepatitis,” Clinical and Experimental Immunology, vol. 84, no. 2, pp. 297–302, 1991. View at Google Scholar · View at Scopus
  10. M. S. Longhi, M. J. Hussain, D. P. Bogdanos et al., “Cytochrome P450IID6-specific CD8 T cell immune responses mirror disease activity in autoimmune hepatitis type 2,” Hepatology, vol. 46, no. 2, pp. 472–484, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. H. F. Löhr, S. Pingel, S. Weyer, T. Fritz, and P. R. Galle, “Individual and common antigen-recognition sites of liver-derived T cells in patients with autoimmune hepatitis,” Scandinavian Journal of Immunology, vol. 57, no. 4, pp. 384–390, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Ma, D. P. Bogdanos, M. J. Hussain et al., “Polyclonal T-cell responses to cytochrome P450IID6 are associated with disease activity in autoimmune hepatitis type 2,” Gastroenterology, vol. 130, no. 3, pp. 868–882, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Celli and P. Matzinger, “Liver transplants induce deletion of liver-specific T cells,” Transplantation Proceedings, vol. 33, no. 1-2, pp. 102–103, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. V. Racanelli and B. Rehermann, “The liver as an immunological organ,” Hepatology, vol. 43, no. 2, supplement 1, pp. S54–S62, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. I. N. Crispe, “The liver as a lymphoid organ,” Annual Review of Immunology, vol. 27, pp. 147–163, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. M. G. Lassen, J. R. Lukens, J. S. Dolina, M. G. Brown, and Y. S. Hahn, “Intrahepatic IL-10 maintains NKG2A+Ly49- liver NK cells in a functionally hyporesponsive state,” Journal of Immunology, vol. 184, no. 5, pp. 2693–2701, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. S. K. Bliss, S. P. Bliss, D. P. Beiting, A. Alcaraz, and J. A. Appleton, “IL-10 regulates movement of intestinally derived CD4+ T cells to the liver,” Journal of Immunology, vol. 178, no. 12, pp. 7974–7983, 2007. View at Google Scholar · View at Scopus
  18. S. Oertelt, Z. X. Lian, C. M. Cheng et al., “Anti-mitochondrial antibodies and primary biliary cirrhosis in TGF-βreceptor II dominant-negative mice,” Journal of Immunology, vol. 177, no. 3, pp. 1655–1660, 2006. View at Google Scholar · View at Scopus
  19. W. Li, C. S. Kuhr, X. X. Zheng et al., “New insights into mechanisms of spontaneous liver transplant tolerance: the role of Foxp3-expressing CD25+CD4+ regulatory T cells,” American Journal of Transplantation, vol. 8, no. 8, pp. 1639–1651, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Ferri, M. S. Longhi, C. De Molo et al., “A multifaceted imbalance of T cells with regulatory function characterizes type 1 autoimmune hepatitis,” Hepatology, vol. 52, no. 3, pp. 999–1007, 2010. View at Publisher · View at Google Scholar
  21. M. S. Longhi, M. J. Hussain, R. R. Mitry et al., “Functional study of CD4+CD25+ regulatory T cells in health and autoimmune hepatitis,” Journal of Immunology, vol. 176, no. 7, pp. 4484–4491, 2006. View at Google Scholar · View at Scopus
  22. K. Sakaguchi, M. Kitano, M. Nishimura et al., “Serum level of transforming growth factor-β (TGF-β) and the expression of TGF-β receptor type II in peripheral blood mononuclear cells in patients with autoimmune hepatitis,” Hepato-Gastroenterology, vol. 51, no. 60, pp. 1780–1783, 2004. View at Google Scholar · View at Scopus
  23. A. J. Czaja, “Current concepts in autoimmune hepatitis,” Annals of Hepatologyy, vol. 4, no. 1, pp. 6–24, 2005. View at Google Scholar · View at Scopus
  24. J. J. Feld, H. Dinh, T. Arenovich, V. A. Marcus, I. R. Wanless, and E. J. Heathcote, “Autoimmune hepatitis: effect of symptoms and cirrhosis on natural history and outcome,” Hepatology, vol. 42, no. 1, pp. 53–62, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. S. K. Roberts, T. M. Therneau, and A. J. Czaja, “Prognosis of histological cirrhosis in type 1 autoimmune hepatitis,” Gastroenterology, vol. 110, no. 3, pp. 848–857, 1996. View at Publisher · View at Google Scholar · View at Scopus
  26. T. A. Malik and S. Saeed, “Autoimmune hepatitis: a review,” Journal of the Pakistan Medical Association, vol. 60, no. 5, pp. 381–387, 2010. View at Google Scholar · View at Scopus
  27. M. S. Longhi, Y. Ma, G. Mieli-Vergani, and D. Vergani, “Aetiopathogenesis of autoimmune hepatitis,” Journal of Autoimmunity, vol. 34, no. 1, pp. 7–14, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Tamori, M. Shinzaki, S. Kosaka et al., “Thiopurine S-methyltransferase gene polymorphism in Japanese patients with autoimmune liver diseases,” Liver International, vol. 27, no. 1, pp. 95–100, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Agarwal, A. J. Czaja, D. E. J. Jones, and P. T. Donaldson, “Cytotoxic T lymphocyte antigen-4 (CTLA-4) gene polymorphisms and susceptibility to type 1 autoimmune hepatitis,” Hepatology, vol. 31, no. 1, pp. 49–53, 2000. View at Google Scholar · View at Scopus
  30. I. Djilali-Saiah, P. Ouellette, S. Caillat-Zucman, D. Debray, J. I. Kohn, and F. Alvarez, “CTLA-4/CD28 region polymorphisms in children from families with autoimmune hepatitis,” Human Immunology, vol. 62, no. 12, pp. 1356–1362, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Cookson, P. K. Constantini, M. Clare et al., “Frequency and nature of cytokine gene polymorphisms in type 1 autoimmune hepatitis,” Hepatology, vol. 30, no. 4, pp. 851–856, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. D. G. Doherty, J. A. Underhill, P. T. Donaldson et al., “Polymorphism in the human complement C4 genes and genetic susceptibility to autoimmune hepatitis,” Autoimmunity, vol. 18, no. 4, pp. 243–249, 1994. View at Google Scholar · View at Scopus
  33. A. Hiraide, F. Imazeki, O. Yokosuka et al., “Fas polymorphisms influence susceptibility to autoimmune hepatitis,” American Journal of Gastroenterology, vol. 100, no. 6, pp. 1322–1329, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. A. J. Svendsen, N. V. Holm, K. Kyvik, P. H. Petersen, and P. Junker, “Relative importance of genetic effects in rheumatoid arthritis: historical cohort study of Danish nationwide twin population,” British Medical Journal, vol. 324, no. 7332, pp. 264–266, 2002. View at Google Scholar · View at Scopus
  35. D. A. Ringold, J. T. Nicoloff, M. Kesler, H. Davis, A. Hamilton, and T. Mack, “Further evidence for a strong genetic influence on the development of autoimmune thyroid disease: the California twin study,” Thyroid, vol. 12, no. 8, pp. 647–653, 2002. View at Google Scholar · View at Scopus
  36. D. M. Grennan, A. Parfitt, N. Manolios et al., “Family and twin studies in systemic lupus erythematosus,” Disease Markers, vol. 13, no. 2, pp. 93–98, 1997. View at Google Scholar · View at Scopus
  37. T. Mizutani, M. Shinoda, Y. Tanaka et al., “Autoantibodies against CYP2D6 and other drug-metabolizing enzymes in autoimmune hepatitis type 2,” Drug Metabolism Reviews, vol. 37, no. 1, pp. 235–252, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. E. Björnsson, J. Talwalkar, S. Treeprasertsuk et al., “Drug-induced autoimmune hepatitis: clinical characteristics and prognosis,” Hepatology, vol. 51, no. 6, pp. 2040–2048, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. R. Ramachandran and S. Kakar, “Histological patterns in drug-induced liver disease,” Journal of Clinical Pathology, vol. 62, no. 6, pp. 481–492, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Mancini, E. Amorotti, S. Vecchio, M. P. de Leon, and L. Roncucci, “Infliximab-related hepatitis: discussion of a case and review of the literature,” Internal and Emergency Medicine, vol. 5, no. 3, pp. 193–200, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. V. Alla, J. Abraham, J. Siddiqui et al., “Autoimmune hepatitis triggered by statins,” Journal of Clinical Gastroenterology, vol. 40, no. 8, pp. 757–761, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Bourdi, W. Chen, R. M. Peter et al., “Human cytochrome P450 2E1 is a major autoantigen associated with halothane hepatitis,” Chemical Research in Toxicology, vol. 9, no. 7, pp. 1159–1166, 1996. View at Publisher · View at Google Scholar · View at Scopus
  43. P. H. Beaune, S. Lecoeur, M. Bourdi et al., “Anti-cytochrome p450 autoantibodies in drug-induced disease,” European Journal of Haematology, Supplement, vol. 57, no. 60, pp. 89–92, 1996. View at Google Scholar · View at Scopus
  44. A. Meneguz, S. Fortuna, P. Lorenzini, and M. T. Volpe, “Influence of urethane and ketamine on rat hepatic cytochrome P450 in vivo,” Experimental and Toxicologic Pathology, vol. 51, no. 4-5, pp. 392–396, 1999. View at Google Scholar · View at Scopus
  45. SU. N. Kim, JI. Y. Seo, DA. W. Jung, M. Y. Lee, Y. S. Jung, and Y. C. Kim, “Induction of hepatic CYP2E1 by a subtoxic dose of acetaminophen in rats: increase in dichloromethane metabolism and carboxyhemoglobin elevation,” Drug Metabolism and Disposition, vol. 35, no. 10, pp. 1754–1758, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. F. López-Muñoz, C. Alamo, E. Cuenca, and G. Rubio, “Effect of antidepressant drugs on cytochrome P-450 isoenzymes and their clinical relevance: differential profile,” Actas Luso-Españolas de Neurología, Psiquiatría y Ciencias Afines, vol. 25, no. 6, pp. 397–409, 1997. View at Google Scholar · View at Scopus
  47. S. Rosenborg, M. Stenberg, S. Ötto et al., “Clinically significant CYP2C inhibition by noscapine but not by glucosamine,” Clinical Pharmacology and Therapeutics, vol. 88, no. 3, pp. 343–346, 2010. View at Publisher · View at Google Scholar
  48. E. Eliasson and J. G. Kenna, “Cytochrome P450 2E1 is a cell surface autoantigen in halothane hepatitis,” Molecular Pharmacology, vol. 50, no. 3, pp. 573–582, 1996. View at Google Scholar · View at Scopus
  49. M. Bourdi, M. Tinel, P. H. Beaune, and D. Pessayre, “Interactions of dihydralazine with cytochromes P4501A: a possible explanation for the appearance of anti-cytochrome P4501A2 autoantibodies,” Molecular Pharmacology, vol. 45, no. 6, pp. 1287–1295, 1994. View at Google Scholar · View at Scopus
  50. E. P. A. Neve and M. Ingelman-Sundberg, “Cytochrome P450 proteins: retention and distribution from the endoplasmic reticulum,” Current Opinion in Drug Discovery and Development, vol. 13, no. 1, pp. 78–85, 2010. View at Google Scholar · View at Scopus
  51. S. M. Zhu, X. F. Ren, J. X. Wan, and Z. L. Xia, “Evaluation in vinyl chloride monomer-exposed workers and the relationship between liver lesions and gene polymorphisms of metabolic enzymes,” World Journal of Gastroenterology, vol. 11, no. 37, pp. 5821–5827, 2005. View at Google Scholar · View at Scopus
  52. T. Imaizumi, Y. Higaki, M. Hara et al., “Interaction between cytochrome P450 1A2 genetic polymorphism and cigarette smoking on the risk of hepatocellular carcinoma in a Japanese population,” Carcinogenesis, vol. 30, no. 10, pp. 1729–1734, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. Y. Chen, G. Li, S. Yin et al., “Genetic polymorphisms involved in toxicant-metabolizing enzymes and the risk of chronic benzene poisoning in Chinese occupationally exposed populations,” Xenobiotica, vol. 37, no. 1, pp. 103–112, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. F. Vidal, A. Lorenzo, T. Auguet et al., “Genetic polymorphisms of ADH, ADH, CYP 2E1 Dra-I and Pst-I, and ALDH in Spanish men: lack of association with alcoholism and alcoholic liver disease,” Journal of Hepatology, vol. 41, no. 5, pp. 744–750, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. O. Faroon, J. Taylor, N. Roney, M. E. Fransen, S. Bogaczyk, and G. Diamon, Toxicological Profile for Carbon Tetrachloride, US DHHS Agency for Toxic Substances and Disease Registry, 2005.
  56. C. K. Sun, C. H. Chen, Y. H. Kao et al., “Bone marrow cells reduce fibrogenesis and enhance regeneration in fibrotic rat liver,” Journal of Surgical Research. In press. View at Publisher · View at Google Scholar
  57. G. Ramadori, F. Moriconi, I. Malik, and J. Dudas, “Physiology and pathophysiology of liver inflammation, damage and repair,” Journal of Physiology and Pharmacology, vol. 59, no. 1, pp. 107–117, 2008. View at Google Scholar · View at Scopus
  58. J. L. Aparicio, M. Duhalde-Vega, M. E. Loureiro, and L. A. Retegui, “The autoimmune response induced by mouse hepatitis virus A59 is expanded by a hepatotoxic agent,” International Immunopharmacology, vol. 9, no. 5, pp. 627–631, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. ATSDR, Toxicological Profile for Trichloroethylene. Update Draft for Public Comments, Agency for Toxic Substances and Disease Registry, Atlanta, Ga, USA, 1995.
  60. V. S. Byers, A. S. Levin, D. M. Ozonoff, and R. W. Baldwin, “Association between clinical symptoms and lymphocyte abnormalities in a population with chronic domestic exposure to industrial solvent-contaminated domestic water supply and a high incidence of leukaemia,” Cancer Immunology Immunotherapy, vol. 27, no. 1, pp. 77–81, 1988. View at Google Scholar
  61. S. Yanez Diaz, M. Moran, P. Unamuno, and M. Armijo, “Silica and trichloroethylene-induced progressive systemic sclerosis,” Dermatology, vol. 184, no. 2, pp. 98–102, 1992. View at Google Scholar · View at Scopus
  62. B. L. Hansen and H. Isager, “A scleroderma-resembling disease–exposure to trichloroethylene and trichloroethane, is there a causal connection?” Ugeskrift for Laeger, vol. 150, no. 13, pp. 805–808, 1988. View at Google Scholar · View at Scopus
  63. E. M. Saihan, J. L. Burton, and K. W. Heaton, “A new syndrome with pigmentation, scleroderma, gynaecomastia, Raynaud's phenomenon and peripheral neuropathy,” British Journal of Dermatology, vol. 99, no. 4, pp. 437–440, 1978. View at Google Scholar · View at Scopus
  64. H. Flindt-Hansen and H. Isager, “Scleroderma after occupational exposure to trichlorethylene and trichlorethane,” Acta Dermato-Venereologica, vol. 95, pp. 173–181, 1987. View at Google Scholar
  65. L. Czirjak, E. Pocs, and G. Szegedi, “Localized scleroderma after exposure to organic solvents,” Dermatology, vol. 189, no. 4, pp. 399–401, 1994. View at Google Scholar · View at Scopus
  66. J. E. Lockey, C. R. Kelly, and G. W. Cannon, “Progressive systemic sclerosis associated with exposure to trichloroethylene,” Journal of Occupational Medicine, vol. 29, no. 6, pp. 493–496, 1987. View at Google Scholar
  67. R. Dubrow and D. M. Gute, “Cause-specific mortality among Rhode Island jewelry workers,” American Journal of Industrial Medicine, vol. 12, no. 5, pp. 579–593, 1987. View at Google Scholar · View at Scopus
  68. G. L. Gist and J. A. R. Burg, “Trichloroethylene—a review of the literature from a health effects perspective,” Toxicology and Industrial Health, vol. 11, no. 3, pp. 253–307, 1995. View at Google Scholar · View at Scopus
  69. C. M. Stanca, J. Babar, V. Singal, E. Ozdenerol, and J. A. Odin, “Pathogenic role of environmental toxins in immune-mediated liver diseases,” Journal of Immunotoxicology, vol. 5, no. 1, pp. 59–68, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. X. Tang, B. Que, X. Song et al., “Characterization of liver injury associated with hypersensitive skin reactions induced by trichloroethylene in the guinea pig maximization test,” Journal of Occupational Health, vol. 50, no. 2, pp. 114–121, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. M. Kamijima, H. Wang, H. Huang et al., “Trichloroethylene causes generalized hypersensitivity skin disorders complicated by hepatitis,” Journal of Occupational Health, vol. 50, no. 4, pp. 328–338, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. K. H. Kilburn and R. H. Warshaw, “Prevalence of symptoms of systemic lupus erythematosus (SLE) and of fluorescent antinuclear antibodies associated with chronic exposure to trichloroethylene and other chemicals in well water,” Environmental Research, vol. 57, no. 1, pp. 1–9, 1992. View at Google Scholar · View at Scopus
  73. L. C. Clark, A. Giulano, B. Walsh et al., The Santa Cruz County Community Health Survey, Arizona Department of Health Services, Phoenix, Ariz, USA, 1994.
  74. P. J. Nietert, S. E. Sutherland, R. M. Silver et al., “Is occupational organic solvent exposure a risk factor for scleroderma?” Arthritis and Rheumatism, vol. 41, no. 6, pp. 1111–1118, 1998. View at Publisher · View at Google Scholar · View at Scopus
  75. I. Iavicoli, A. Marinaccio, and G. Carelli, “Effects of occupational trichloroethylene exposure on cytokine levels in workers,” Journal of Occupational and Environmental Medicine, vol. 47, no. 5, pp. 453–457, 2005. View at Publisher · View at Google Scholar · View at Scopus
  76. M. F. Khan, B. S. Kaphalia, B. S. Prabhakar, M. F. Kanz, and G. A. S. Ansari, “Trichloroethene-induced autoimmune response in female MRL +/+ mice,” Toxicology and Applied Pharmacology, vol. 134, no. 1, pp. 155–160, 1995. View at Publisher · View at Google Scholar · View at Scopus
  77. J. M. Griffin, K. M. Gilbert, L. W. Lamps, and N. R. Pumford, “CD4 T-cell activation and induction of autoimmune hepatitis following trichloroethylene treatment in MRL+/+ mice,” Toxicological Sciences, vol. 57, no. 2, pp. 345–352, 2000. View at Google Scholar · View at Scopus
  78. K. M. Gilbert, J. M. Griffin, and N. R. Pumford, “Trichloroethylene activates CD4 T cells: potential role in an autoimmune response,” Drug Metabolism Reviews, vol. 31, no. 4, pp. 901–916, 1999. View at Publisher · View at Google Scholar · View at Scopus
  79. K. M. Gilbert, B. Przybyla, N. R. Pumford et al., “Delineating liver events in trichloroethylene-induced autoimmune hepatitis,” Chemical Research in Toxicology, vol. 22, no. 4, pp. 626–632, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. L. H. Lash, J. W. Fisher, J. C. Lipscomb, and J. C. Parker, “Metabolism of trichloroethylene,” Environmental Health Perspectives, vol. 108, no. 2, pp. 177–200, 2000. View at Google Scholar · View at Scopus
  81. J. C. Lipscomb, D. A. Mahle, W. T. Brashear, and C. M. Garrett, “A species comparison of chloral hydrate metabolism in blood and liver,” Biochemical and Biophysical Research Communications, vol. 227, no. 2, pp. 340–350, 1996. View at Publisher · View at Google Scholar · View at Scopus
  82. J. A. Buben and E. J. O'Flaherty, “Delineation of the role of metabolism in the hepatotoxicity of trichloroethylene and perchloroethylene: a dose-effect study,” Toxicology and Applied Pharmacology, vol. 78, no. 1, pp. 105–122, 1985. View at Google Scholar · View at Scopus
  83. J. M. Griffin, K. M. Gilbert, and N. R. Pumford, “Inhibition of CYP2E1 reverses CD4+ T-cell alterations in trichloroethylene-treated MRL+/+ mice,” Toxicological Sciences, vol. 54, no. 2, pp. 384–389, 2000. View at Google Scholar · View at Scopus
  84. S. J. Blossom, J. C. Doss, and K. M. Gilbert, “Chronic exposure to a trichloroethylene metabolite in autoimmune-prone MRL+/+ mice promotes immune modulation and alopecia,” Toxicological Sciences, vol. 95, no. 2, pp. 401–411, 2007. View at Publisher · View at Google Scholar · View at Scopus
  85. N. C. Halmes, D. C. McMillan, J. E. Oatis, and N. R. Pumford, “Immunochemical detection of protein adducts in mice treated with trichloroethylene,” Chemical Research in Toxicology, vol. 9, no. 2, pp. 451–456, 1996. View at Publisher · View at Google Scholar · View at Scopus
  86. P. Tripathi and D. Hildeman, “Sensitization of T cells to apoptosis - A role for ROS,” Apoptosis, vol. 9, no. 5, pp. 515–523, 2004. View at Publisher · View at Google Scholar · View at Scopus
  87. P. Marrack and J. Kappler, “Control of T cell viability,” Annual Review of Immunology, vol. 22, pp. 765–787, 2004. View at Publisher · View at Google Scholar · View at Scopus
  88. D. R. Green, N. Droin, and M. Pinkoski, “Activation-induced cell death in T cells,” Immunological Reviews, vol. 193, pp. 70–81, 2003. View at Publisher · View at Google Scholar · View at Scopus
  89. B. Kovacs, D. Vassilopoulos, S. A. Vogelgesang, and G. C. Tsokos, “Defective CD3-mediated cell death in activated T cells from patients with systemic lupus erythematosus: role of decreased intracellular TNF-,” Clinical Immunology and Immunopathology, vol. 81, no. 3, pp. 293–302, 1996. View at Publisher · View at Google Scholar · View at Scopus
  90. F. Le Deist, J. F. Emile, F. Rieux-Laucat et al., “Clinical, immunological, and pathological consequences of Fas-deficient conditions,” Lancet, vol. 348, no. 9029, pp. 719–723, 1996. View at Publisher · View at Google Scholar · View at Scopus
  91. S. Waiczies, A. Weber, J. D. Lünemann, O. Aktas, R. Zschenderlein, and F. Zipp, “Elevated Bcl-X levels correlate with T cell survival in multiple sclerosis,” Journal of Neuroimmunology, vol. 126, no. 1-2, pp. 213–220, 2002. View at Publisher · View at Google Scholar · View at Scopus
  92. Y. K. Semra, O. A. Seidi, and M. K. Sharief, “Disease activity in multiple sclerosis correlates with T lymphocyte expression of the inhibitor of apoptosis proteins,” Journal of Neuroimmunology, vol. 122, no. 1-2, pp. 159–166, 2002. View at Publisher · View at Google Scholar · View at Scopus
  93. M. C. Sneller, J. Wang, J. K. Dale et al., “Clinical, immunologic, and genetic features of an autoimmune lymphoproliferative syndrome associated with abnormal lymphocyte apoptosis,” Blood, vol. 89, no. 4, pp. 1341–1348, 1997. View at Google Scholar · View at Scopus
  94. P. Szodoray, S. Jellestad, B. Nakken, J. G. Brun, and R. Jonsson, “Programmed cell death in rheumatoid arthritis peripheral blood T-cell subpopulations determined by laser scanning cytometry,” Laboratory Investigation, vol. 83, no. 12, pp. 1839–1848, 2003. View at Publisher · View at Google Scholar · View at Scopus
  95. G. Bona, S. Defranco, A. Chiocchetti et al., “Defective function of Fas in T cells from paediatric patients with autoimmune thyroid diseases,” Clinical and Experimental Immunology, vol. 133, no. 3, pp. 430–437, 2003. View at Publisher · View at Google Scholar · View at Scopus
  96. B. R. Lawson, R. Baccala, J. Song, M. Croft, D. H. Kono, and A. N. Theofilopoulos, “Deficiency of the cyclin kinase inhibitor p21(WAF-1/CIP-1) promotes apoptosis of activated/memory T cells and inhibits spontaneous systemic autoimmunity,” Journal of Experimental Medicine, vol. 199, no. 4, pp. 547–557, 2004. View at Publisher · View at Google Scholar · View at Scopus
  97. S. J. Blossom, N. R. Pumford, and K. M. Gilbert, “Activation and attenuation of apoptosis of CD4(+) T cells following in vivo exposure to two common environmental toxicants, trichloroacetaldehyde hydrate and trichloroacetic acid,” Journal of Autoimmunity, vol. 23, no. 3, pp. 211–220, 2004. View at Publisher · View at Google Scholar · View at Scopus
  98. S. J. Blossom and K. M. Gilbert, “Exposure to a metabolite of the environmental toxicant, trichloroethylene, attenuates CD4 T cell activation-induced cell death by metalloproteinase-dependent FasL shedding,” Toxicological Sciences, vol. 92, no. 1, pp. 103–114, 2006. View at Publisher · View at Google Scholar · View at Scopus
  99. M. Tanaka, T. Itai, M. Adachi, and S. Nagata, “Downregulation of Fas ligand by shedding,” Nature Medicine, vol. 4, no. 1, pp. 31–36, 1998. View at Publisher · View at Google Scholar · View at Scopus
  100. N. Oyaizu, N. Kayagaki, H. Yagita, S. Pahwa, and Y. Ikawa, “Requirement of cell-cell contact in the induction of Jurkat T cell apoptosis: the membrane-anchored but not soluble form of fasL can trigger anti-CD3-induced apoptosis in Jurkat T cells,” Biochemical and Biophysical Research Communications, vol. 238, no. 2, pp. 670–675, 1997. View at Publisher · View at Google Scholar · View at Scopus
  101. J. L. Fowlkes and M. K. Winkler, “Exploring the interface between metallo-proteinase activity and growth factor and cytokine bioavailability,” Cytokine and Growth Factor Reviews, vol. 13, no. 3, pp. 277–287, 2002. View at Publisher · View at Google Scholar
  102. G. Preece, G. Murphyt, and A. Ager, “Metalloproteinase-mediated regulation of L-selectin levels on leucocytes,” Journal of Biological Chemistry, vol. 271, no. 20, pp. 11634–11640, 1996. View at Publisher · View at Google Scholar · View at Scopus
  103. R. Lichtinghagen, D. Michels, C. I. Haberkorn et al., “Matrix metalloproteinase (MMP)-2, MMP-7, and tissue inhibitor of metalloproteinase-1 are closely related to the fibroproliferative process in the liver during chronic hepatitis C,” Journal of Hepatology, vol. 34, no. 2, pp. 239–247, 2001. View at Publisher · View at Google Scholar · View at Scopus
  104. D. Ljumovic, I. Diamantis, A. K. Alegakis, and E. A. Kouroumalis, “Differential expression of matrix metalloproteinases in viral and non-viral chronic liver diseases,” Clinica Chimica Acta, vol. 349, no. 1-2, pp. 203–211, 2004. View at Publisher · View at Google Scholar · View at Scopus
  105. B. Wielockx, K. Lannoy, S. D. Shapiro et al., “Inhibition of matrix metalloproteinases blocks lethal hepatitis and apoptosis induced by tumor necrosis factor and allows safe antitumor therapy,” Nature Medicine, vol. 7, no. 11, pp. 1202–1208, 2001. View at Publisher · View at Google Scholar · View at Scopus
  106. T. Bohgaki, Y. Amasaki, N. Nishimura et al., “Up regulated expression of tumour necrosis factor α converting enzyme in peripheral monocytes of patients with early systemic sclerosis,” Annals of the Rheumatic Diseases, vol. 64, no. 8, pp. 1165–1173, 2005. View at Publisher · View at Google Scholar
  107. A. Faber-Elmann, Z. Sthoeger, A. Tcherniack, M. Dayan, and E. Mozes, “Activity of matrix metalloproteinase-9 is elevated in sera of patients with systemic lupus erythematosus,” Clinical and Experimental Immunology, vol. 127, no. 2, pp. 393–398, 2002. View at Publisher · View at Google Scholar · View at Scopus
  108. L. Kotajima, S. Aotsuka, M. Fujimani et al., “Increased levels of matrix metalloproteinase-3 in sera from patients with active lupus nephritis,” Clinical and Experimental Rheumatology, vol. 16, no. 4, pp. 409–415, 1998. View at Google Scholar · View at Scopus
  109. V. Bjerkeli, B. Halvorsen, J. K. Damås et al., “Expression of matrix metalloproteinases in patients with Wegener's granulomatosis,” Annals of the Rheumatic Diseases, vol. 63, no. 12, pp. 1659–1663, 2004. View at Publisher · View at Google Scholar · View at Scopus
  110. G. R. Wallace, R. A. Whiston, M. R. Stanford, G. M. A. Wells, A. J. H. Gearing, and J. M. Clements, “The matrix metalloproteinase inhibitor BB-1101 prevents experimental autoimmune uveoretinitis (EAU),” Clinical and Experimental Immunology, vol. 118, no. 3, pp. 364–370, 1999. View at Publisher · View at Google Scholar · View at Scopus
  111. E. Rutkauskaite, D. Volkmer, Y. Shigeyama et al., “Retroviral gene transfer of an antisense construct against membrane type 1 matrix metalloproteinase reduces the invasiveness of rheumatoid arthritis synovial fibroblasts,” Arthritis and Rheumatism, vol. 52, no. 7, pp. 2010–2014, 2005. View at Publisher · View at Google Scholar · View at Scopus
  112. K. M. Gilbert, A. B. Whitlow, and N. R. Pumford, “Environmental contaminant and disinfection by-product trichloroacetaldehyde stimulates T cells in vitro,” International Immunopharmacology, vol. 4, no. 1, pp. 25–36, 2004. View at Publisher · View at Google Scholar · View at Scopus