Table of Contents
Hepatitis Research and Treatment
Volume 2010, Article ID 429243, 10 pages
http://dx.doi.org/10.1155/2010/429243
Clinical Study

Tumor Necrosis Factor Receptor 1 Expression Is Upregulated in Dendritic Cells in Patients with Chronic HCV Who Respond to Therapy

1Division of Digestive and Liver Diseases, Department of Internal Medicine, Southwestern Medical Center at Dallas, University of Texas at Dallas, Dallas, TX 75390-9151, USA
2Dallas Veterans Affairs Medical Center, 4500 S. Lancaster Road, Dallas, Texas 75216, USA

Received 25 March 2010; Revised 28 May 2010; Accepted 31 May 2010

Academic Editor: Tatehiro Kagawa

Copyright © 2010 Raul Cubillas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Zhu, A. Khoshnan, R. Schneider, M. Matsumoto, G. Dennert, C. Ware, and M. M. C. Lai, “Hepatitis C virus core protein binds to the cytoplasmic domain of tumor necrosis factor (TNF) receptor 1 and enhances TNF-induced apoptosis,” Journal of Virology, vol. 72, no. 5, pp. 3691–3697, 1998. View at Google Scholar · View at Scopus
  2. M. Matsumoto, T.-Y. Hsieh, and T.-Y. Hsieh, “Hepatitis C virus core protein interacts with the cytoplasmic tail of lymphotoxin-β receptor,” Journal of Virology, vol. 71, no. 2, pp. 1301–1309, 1997. View at Google Scholar · View at Scopus
  3. C.-M. Chen, L.-R. You, L.-H. Hwang, and Y.-H. W. Lee, “Direct interaction of hepatitis C virus core protein with the cellular lymphotoxin-β receptor modulates the signal pathway of the lymphotoxin-β receptor,” Journal of Virology, vol. 71, no. 12, pp. 9417–9426, 1997. View at Google Scholar
  4. L.-R. You, C.-M. Chen, and Y.-H. W. Lee, “Hepatitis C virus core protein enhances NF-κB signal pathway triggering by lymphotoxin-β receptor ligand and tumor necrosis factor alpha,” Journal of Virology, vol. 73, no. 2, pp. 1672–1681, 1999. View at Google Scholar
  5. C. Fabris, M. Del Forno, E. Falleti, P. Toniutto, and M. Pirisi, “Kinetics of serum soluble tumour necrosis factor receptor (TNF-R) type-I and type-II after a single interferon-alpha (IFN-α) injection in chronic hepatitis C,” Clinical and Experimental Immunology, vol. 117, no. 3, pp. 556–560, 1999. View at Publisher · View at Google Scholar
  6. B. Kallinowski, K. Haseroth, and K. Haseroth, “Induction of tumour necrosis factor (TNF) receptor type p55 and p75 in patients with chronic hepatitis C virus (HCV) infection,” Clinical and Experimental Immunology, vol. 111, no. 2, pp. 269–277, 1998. View at Publisher · View at Google Scholar
  7. G. R. Brown and D. L. Thiele, “Enhancement of MHC class I-stimulated alloresponses by TNF/TNF receptor (TNFR)1 interactions and of MHC class II-stimulated alloresponses by TNF/TNFR2 interactions,” European Journal of Immunology, vol. 30, no. 10, pp. 2900–2907, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. M. I. Kafrouni, G. R. Brown, and D. L. Thiele, “The role of TNF-TNFR2 interactions in generation of CTL responses and clearance of hepatic adenovirus infection,” Journal of Leukocyte Biology, vol. 74, no. 4, pp. 564–571, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. K. Tamada, H. Tamura, and H. Tamura, “Blockade of LIGHT/LTβ and CD40 signaling induces allospecific T cell anergy, preventing graft-versus-host disease,” Journal of Clinical Investigation, vol. 109, no. 4, pp. 549–557, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Radkowski, J. F. Gallegos-Orozco, and J. F. Gallegos-Orozco, “Persistence of hepatitis C virus in patients successfully treated for chronic hepatitis C,” Hepatology, vol. 41, no. 1, pp. 106–114, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. I. Pachiadakis, G. Pollara, B. M. Chain, and N. V. Naoumov, “Is hepatitis C virus infection of dendritic cells a mechanism facilitating viral persistence?” Lancet Infectious Diseases, vol. 5, no. 5, pp. 296–304, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. A. Ulsenheimer, J. T. Gerlach, and J. T. Gerlach, “Plasmacytoid dendritic cells in acute and chronic hepatitis C virus infection,” Hepatology, vol. 41, no. 3, pp. 643–651, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. A. Kaimori, T. Kanto, and T. Kanto, “Pseudotype hepatitis C virus enters immature myeloid dendritic cells through the interaction with lectin,” Virology, vol. 324, no. 1, pp. 74–83, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. M. T. Brady, A. J. MacDonald, A. G. Rowan, and K. H. G. Mills, “Hepatitis C virus non-structural protein 4 suppresses Th1 responses by stimulating IL-10 production from monocytes,” European Journal of Immunology, vol. 33, no. 12, pp. 3448–3457, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. L. Averill, W. M. Lee, and N. J. Karandikar, “Differential dysfunction in dendritic cell subsets during chronic HCV infection,” Clinical Immunology, vol. 123, no. 1, pp. 40–49, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. G. R. Brown, G. Lindberg, J. Meddings, M. Silva, B. Beutler, and D. Thiele, “Tumor necrosis factor inhibitor ameliorates murine intestinal graft- versus-host disease,” Gastroenterology, vol. 116, no. 3, pp. 593–601, 1999. View at Google Scholar · View at Scopus
  17. U. Spengler, R. Zachoval, H. Gallati, M.-C. Jung, R. Hoffmann, G. Riethmüller, and G. Pape, “Serum levels and in situ expression of TNF-α and TNF-α binding proteins in inflammatory liver diseases,” Cytokine, vol. 8, no. 11, pp. 864–872, 1996. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. Y. Getachew, J. D. Browning, M. Prebis, T. Rogers, and G. R. Brown, “Combination therapy for the treatment of hepatitis C in the veteran population: higher than expected rates of therapy discontinuation,” Alimentary Pharmacology and Therapeutics, vol. 20, no. 6, pp. 629–636, 2004. View at Publisher · View at Google Scholar · View at PubMed