Table of Contents
Hepatitis Research and Treatment
Volume 2010 (2010), Article ID 817580, 17 pages
http://dx.doi.org/10.1155/2010/817580
Review Article

Therapeutic Vaccination in Chronic Hepatitis B: Preclinical Studies in the Woodchuck

Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Virchowstraβe 179, 45122, Essen, Germany

Received 7 June 2010; Accepted 29 July 2010

Academic Editor: Yoichi Hiasa

Copyright © 2010 Anna D. Kosinska et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Peters, J. Vierling, M. E. Gershwin, D. Milich, F. V. Chisari, and J. H. Hoofnagle, “Immunology and the liver,” Hepatology, vol. 13, no. 5, pp. 977–994, 1991. View at Publisher · View at Google Scholar · View at Scopus
  2. H. S. Conjeevaram and A. S.-F. Lok, “Management of chronic hepatitis B,” Journal of Hepatology, Supplement, vol. 38, no. 1, pp. S90–S103, 2003. View at Google Scholar · View at Scopus
  3. H. L. A. Janssen, M. Van Zonneveld, H. Senturk et al., “Pegylated interferon alfa-2b alone or in combination with lamivudine for HBeAg-positive chronic hepatitis B: a randomised trial,” The Lancet, vol. 365, no. 9454, pp. 123–129, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. G. K. K. Lau, T. Piratvisuth, K. X. Luo et al., “Peginterferon Alfa-2a, lamivudine, and the combination for HBeAg-positive chronic hepatitis B,” The New England Journal of Medicine, vol. 352, no. 26, pp. 2682–2695, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. J. L. Dienstag, “Drug therapy: hepatitis B virus infection,” The New England Journal of Medicine, vol. 359, no. 14, pp. 1486–1500, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. A. K. Raney, R. K. Hamatake, and Z. Hong, “Agents in clinical development for the treatment of chronic hepatitis B,” Expert Opinion on Investigational Drugs, vol. 12, no. 8, pp. 1281–1295, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Locarnini and W. S. Mason, “Cellular and virological mechanisms of HBV drug resistance,” Journal of Hepatology, vol. 44, no. 2, pp. 422–431, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Penna, M. Artini, A. Cavalli et al., “Long-lasting memory T cell responses following self-limited acute hepatitis B,” Journal of Clinical Investigation, vol. 98, no. 5, pp. 1185–1194, 1996. View at Google Scholar · View at Scopus
  9. A. Penna, G. Del Prete, A. Cavalli et al., “Predominant T-helper 1 cytokine profile of hepatitis B virus nucleocapsid-specific T cells in acute self-limited hepatitis B,” Hepatology, vol. 25, no. 4, pp. 1022–1027, 1997. View at Publisher · View at Google Scholar · View at Scopus
  10. L. G. Guidotti, R. Rochford, J. Chung, M. Shapiro, R. Purcell, and F. V. Chisari, “Viral clearance without destruction of infected cells during acute HBV infection,” Science, vol. 284, no. 5415, pp. 825–829, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Thimme, S. Wieland, C. Steiger et al., “CD8+ T cells mediate viral clearance and disease pathogenesis during acute hepatitis B virus infection,” Journal of Virology, vol. 77, no. 1, pp. 68–76, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. M. K. Maini, C. Boni, C. K. Lee et al., “The role of virus-specific CD8+ cells in liver damage and viral control during persistent hepatitis B virus infection,” Journal of Experimental Medicine, vol. 191, no. 8, pp. 1269–1280, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. J. A. Trapani and M. J. Smyth, “Functional significance of the perforin/granzyme cell death pathway,” Nature Reviews Immunology, vol. 2, no. 10, pp. 735–747, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. L. G. Guidotti, T. Ishikawa, M. V. Hobbs, B. Matzke, R. Schreiber, and F. V. Chisari, “Intracellular inactivation of the hepatitis B virus by cytotoxic T lymphocytes,” Immunity, vol. 4, no. 1, pp. 25–36, 1996. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Mcclary, R. Koch, F. V. Chisari, and L. G. Guidotti, “Relative sensitivity of hepatitis B virus and other hepatotropic viruses to the antiviral effects of cytokines,” Journal of Virology, vol. 74, no. 5, pp. 2255–2264, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. S. F. Wieland, L. G. Guidotti, and F. V. Chisari, “Intrahepatic induction of alpha/beta interferon eliminates viral RNA- containing capsids in hepatitis B virus transgenic mice,” Journal of Virology, vol. 74, no. 9, pp. 4165–4173, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. M. C. Jung, U. Spengler, W. Schraut et al., “Hepatitis B virus antigenspecific T-cell activation in patients with acute and chronic hepatitis B,” Journal of Hepatology, vol. 13, no. 3, pp. 310–317, 1991. View at Google Scholar · View at Scopus
  18. A. Penna, F. V. Chisari, A. Bertoletti et al., “Cytotoxic T lymphocytes recognize an HLA-A2-restricted epitope within the hepatitis B virus nucleocapsid antigen,” Journal of Experimental Medicine, vol. 174, no. 6, pp. 1565–1570, 1991. View at Google Scholar · View at Scopus
  19. B. Rehermann, “Immune responses in hepatitis B virus infection,” Seminars in Liver Disease, vol. 23, no. 1, pp. 21–38, 2003. View at Google Scholar · View at Scopus
  20. B. Rehermann and M. Nascimbeni, “Immunology of hepatitis B virus and hepatitis C virus infection,” Nature Reviews Immunology, vol. 5, no. 3, pp. 215–229, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. P. L. Yang, A. Althage, J. Chung et al., “Immune effectors required for hepatitis B virus clearance,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 2, pp. 798–802, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. F. V. Chisari and C. Ferrari, “Hepatitis B virus immunopathogenesis,” Annual Review of Immunology, vol. 13, pp. 29–60, 1995. View at Google Scholar · View at Scopus
  23. G. J. M. Webster, S. Reignat, D. Brown et al., “Longitudinal analysis of CD8+ T cells specific for structural and nonstructural hepatitis B virus proteins in patients with chronic hepatitis B: implications for immunotherapy,” Journal of Virology, vol. 78, no. 11, pp. 5707–5719, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Okazaki and T. Honjo, “The PD-1-PD-L pathway in immunological tolerance,” Trends in Immunology, vol. 27, no. 4, pp. 195–201, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. E. J. Wherry, S.-J. Ha, S. M. Kaech et al., “Molecular signature of CD8+ T cell exhaustion during chronic viral infection,” Immunity, vol. 27, no. 4, pp. 670–684, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Urbani, B. Amadei, D. Tola et al., “PD-1 expression in acute hepatitis C virus (HCV) infection is associated with HCV-specific CD8 exhaustion,” Journal of Virology, vol. 80, no. 22, pp. 11398–11403, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Urbani, B. Amadei, D. Tola et al., “Restoration of HCV-specific T cell functions by PD-1/PD-L1 blockade in HCV infection: effect of viremia levels and antiviral treatment,” Journal of Hepatology, vol. 48, no. 4, pp. 548–558, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. C. L. Day, D. E. Kaufmann, P. Kiepiela et al., “PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression,” Nature, vol. 443, no. 7109, pp. 350–354, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Petrovas, J. P. Casazza, J. M. Brenchley et al., “PD-1 is a regulator of virus-specific CD8+ T cell survival in HIV infection,” Journal of Experimental Medicine, vol. 203, no. 10, pp. 2281–2292, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. L. Trautmann, L. Janbazian, N. Chomont et al., “Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction,” Nature Medicine, vol. 12, no. 10, pp. 1198–1202, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. D. L. Barber, E. J. Wherry, D. Masopust et al., “Restoring function in exhausted CD8 T cells during chronic viral infection,” Nature, vol. 439, no. 7077, pp. 682–687, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Grakoui, E. J. Wherry, H. L. Hanson, C. Walker, and R. Ahmed, “Turning on the off switch: regulation of anti-viral T cell responses in the liver by the PD-1/PD-L1 pathway,” Journal of Hepatology, vol. 45, no. 4, pp. 468–472, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Boni, P. Fisicaro, C. Valdatta et al., “Characterization of hepatitis B virus (HBV)-specific T-cell dysfunction in chronic HBV infection,” Journal of Virology, vol. 81, no. 8, pp. 4215–4225, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Maier, M. Isogawa, G. J. Freeman, and F. V. Chisari, “PD-1:PD-L1 interactions contribute to the functional suppression of virus-specific CD8+ T lymphocytes in the liver,” Journal of Immunology, vol. 178, no. 5, pp. 2714–2720, 2007. View at Google Scholar · View at Scopus
  35. R. G. Van Der Molen, D. Sprengers, R. S. Binda et al., “Functional impairment of myeloid and plasmacytoid dendritic cells of patients with chronic hepatitis B,” Hepatology, vol. 40, no. 3, pp. 738–746, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Miyazaki, T. Kanto, M. Inoue et al., “Impaired cytokine response in myeloid dendritic cells in chronic hepatitis C virus infection regardless of enhanced expression of toll-like receptors and retinoic acid inducible gene-I,” Journal of Medical Virology, vol. 80, no. 6, pp. 980–988, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Tavakoli, I. Mederacke, S. Herzog-Hauff et al., “Peripheral blood dendritic cells are phenotypically and functionally intact in chronic hepatitis B virus (HBV) infection,” Clinical and Experimental Immunology, vol. 151, no. 1, pp. 61–70, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. K. Wang, X. Fan, Y. Fan, B. Wang, L. Han, and Y. Hou, “Study on the function of circulating plasmacytoid dendritic cells in the immunoactive phase of patients with chronic genotype B and C HBV infection,” Journal of Viral Hepatitis, vol. 14, no. 4, pp. 276–282, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. L. Chen, Z. Zhang, W. Chen et al., “B7-H1 up-regulation on myeloid dendritic cells significantly suppresses T cell immune function in patients with chronic hepatitis B,” Journal of Immunology, vol. 178, no. 10, pp. 6634–6641, 2007. View at Google Scholar · View at Scopus
  40. B. J. Zheng, J. Zhou, D. Qu et al., “Selective functional deficit in dendritic cell - T cell interaction is a crucial mechanism in chronic hepatitis B virus infection,” Journal of Viral Hepatitis, vol. 11, no. 3, pp. 217–224, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Hong and Z. J. Gong, “Human plasmacytoid dendritic cells from patients with chronic hepatitis B virus infection induce the generation of a higher proportion of CD4+ and CD25+ regulatory T cells compared with healthy patients,” Hepatology Research, vol. 38, no. 4, pp. 362–373, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Li, E. J. Gowans, C. Chougnet, M. Plebanski, and U. Dittmer, “Natural regulatory T cells and persistent viral infection,” Journal of Virology, vol. 82, no. 1, pp. 21–30, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. S. M. Rushbrook, S. M. Ward, E. Unitt et al., “Regulatory T cells suppress in vitro proliferation of virus-specific CD8+ T cells during persistent hepatitis C virus infection,” Journal of Virology, vol. 79, no. 12, pp. 7852–7859, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. A. L. Kinter, M. Hennessey, A. Bell et al., “CD25+CD4+ regulatory T cells from the peripheral blood of asymptomatic HIV-infected individuals regulate CD4+ and CD8+ HIV-specific T cell immune responses in vitro and are associated with favorable clinical markers of disease status,” Journal of Experimental Medicine, vol. 200, no. 3, pp. 331–343, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. L. Weiss, V. Donkova-Petrini, L. Caccavelli, M. Balbo, C. Carbonneil, and Y. Levy, “Human immunodeficiency virus-driven expansion of CD4+CD25+ regulatory T cells, which suppress HIV-specific CD4 T-cell responses in HIV-infected patients,” Blood, vol. 104, no. 10, pp. 3249–3256, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. D. Xu, J. Fu, L. Jin et al., “Circulating and liver resident CD4+CD25+ regulatory T cells actively influence the antiviral immune response and disease progression in patients with hepatitis B,” Journal of Immunology, vol. 177, no. 1, pp. 739–747, 2006. View at Google Scholar · View at Scopus
  47. P. Bertolino, D. G. Bowen, G. W. McCaughan, and B. Fazekas de St. Groth, “Antigen-specific primary activation of CD8+ T cells within the liver,” Journal of Immunology, vol. 166, no. 9, pp. 5430–5438, 2001. View at Google Scholar · View at Scopus
  48. D. G. Bowen, M. Zen, L. Holz, T. Davis, G. W. McCaughan, and P. Bertolino, “The site of primary T cell activation is a determinant of the balance between intrahepatic tolerance and immunity,” Journal of Clinical Investigation, vol. 114, no. 5, pp. 701–712, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. Z. L. Brumme, C. J. Brumme, D. Heckerman et al., “Evidence of differential HLA class I-mediated viral evolution in functional and accessory/regulatory genes of HIV-1,” PLoS Pathogens, vol. 3, no. 7, article e94, pp. 0913–0927, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. T. Bhattacharya, M. Daniels, D. Heckerman et al., “Founder effects in the assessment of HIV polymorphisms and HLA allele associations,” Science, vol. 315, no. 5818, pp. 1583–1586, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. J. Timm, B. Li, M. G. Daniels et al., “Human leukocyte antigen-associated sequence polymorphisms in hepatitis C virus reveal reproducible immune responses and constraints on viral evolution,” Hepatology, vol. 46, no. 2, pp. 339–349, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. Z.-Y. Keck, S. H. Li, J. Xia et al., “Mutations in hepatitis C virus E2 located outside the CD81 binding sites lead to escape from broadly neutralizing antibodies but compromise virus infectivity,” Journal of Virology, vol. 83, no. 12, pp. 6149–6160, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. C.-J. Liu, J.-H. Kao, W.-Y. Shau, P.-J. Chen, M.-Y. Lai, and D.-S. Chen, “Naturally occurring hepatitis B surface gene variants in chronic hepatitis B virus infection: correlation with viral serotypes and clinical stages of liver disease,” Journal of Medical Virology, vol. 68, no. 1, pp. 50–59, 2002. View at Publisher · View at Google Scholar · View at Scopus
  54. Y.-H. Ni, M.-H. Chang, H.-Y. Hsu et al., “Mutations of T-cell epitopes in the hepatitis B virus surface gene in children with chronic infection and hepatocellular carcinoma,” American Journal of Gastroenterology, vol. 103, no. 4, pp. 1004–1009, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. C. Boni, A. Penna, G. S. Ogg et al., “Lamivudine treatment can overcome cytotoxic T-cell hyporesponsiveness in chronic hepatitis B: new perspectives for immune therapy,” Hepatology, vol. 33, no. 4, pp. 963–971, 2001. View at Publisher · View at Google Scholar · View at Scopus
  56. C. Boni, A. Penna, A. Bertoletti et al., “Transient restoration of anti-viral T cell responses induced by lamivudine therapy in chronic hepatitis B,” Journal of Hepatology, vol. 39, no. 4, pp. 595–605, 2003. View at Publisher · View at Google Scholar · View at Scopus
  57. E. I. Rigopoulou, D. Suri, S. Chokshi et al., “Lamivudine plus interleukin-12 combination therapy in chronic hepatitis B: antiviral and immunological activity,” Hepatology, vol. 42, no. 5, pp. 1028–1036, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. S. Pol, F. Driss, M.-L. Michel, B. Nalpas, P. Berthelot, and C. Brechot, “Specific vaccine therapy in chronic hepatitis B infection,” The Lancet, vol. 344, no. 8918, p. 342, 1994. View at Google Scholar · View at Scopus
  59. S. Pol, B. Nalpas, F. Driss et al., “Efficacy and limitations of a specific immunotherapy in chronic hepatitis B,” Journal of Hepatology, vol. 34, no. 6, pp. 917–921, 2001. View at Publisher · View at Google Scholar · View at Scopus
  60. I. Couillin, S. Pol, M. Mancini et al., “Specific vaccine therapy in chronic hepatitis B: induction of T cell proliferative responses specific for envelope antigens,” Journal of Infectious Diseases, vol. 180, no. 1, pp. 15–26, 1999. View at Publisher · View at Google Scholar · View at Scopus
  61. M.-C. Jung, N. Grüner, R. Zachoval et al., “Immunological monitoring during therapeutic vaccination as a prerequisite for the design of new effective therapies: induction of a vaccine-specific CD4+ T-cell proliferative response in chronic hepatitis B carriers,” Vaccine, vol. 20, no. 29-30, pp. 3598–3612, 2002. View at Publisher · View at Google Scholar · View at Scopus
  62. F. Ren, K. Hino, Y. Yamaguchi et al., “Cytokine-dependent anti-viral role of CD4+-positive T cells in therapeutic vaccination against chronic hepatitis B viral infection,” Journal of Medical Virology, vol. 71, no. 3, pp. 376–384, 2003. View at Publisher · View at Google Scholar · View at Scopus
  63. R. Safadi, E. Israeli, O. Papo et al., “Treatment of chronic hepatitis B virus infection via oral immune regulation toward hepatitis B virus proteins,” American Journal of Gastroenterology, vol. 98, no. 11, pp. 2505–2515, 2003. View at Publisher · View at Google Scholar · View at Scopus
  64. K. Yalcin, M. Acar, and H. Degertekin, “Specific hepatitis B vaccine therapy in inactive HBsAg carriers: a randomized controlled trial,” Infection, vol. 31, no. 4, pp. 221–225, 2003. View at Google Scholar · View at Scopus
  65. B. Dikici, A. G. Kalayci, F. Ozgenc et al., “Therapeutic vaccination in the immunotolerant phase of children with chronic hepatitis B infection,” Pediatric Infectious Disease Journal, vol. 22, no. 4, pp. 345–349, 2003. View at Publisher · View at Google Scholar · View at Scopus
  66. A. Dahmen, S. Herzog-Hauff, W. O. Bocher et al., “Clinical and immunological efficacy of intradermal vaccine plus lamivudine with or without interleukin-2 in patients with chronic hepatitis B,” Journal of Medical Virology, vol. 66, no. 4, pp. 452–460, 2002. View at Publisher · View at Google Scholar · View at Scopus
  67. N. Horiike, S. M. Fazle, K. Michitaka et al., “In vivo immunization by vaccine therapy following virus suppression by lamivudine: a novel approach for treating patients with chronic hepatitis B,” Journal of Clinical Virology, vol. 32, no. 2, pp. 156–161, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. P. Vandepapelière, G. K. K. Lau, G. Leroux-Roels et al., “Therapeutic vaccination of chronic hepatitis B patients with virus suppression by antiviral therapy: a randomized, controlled study of co-administration of HBsAg/AS02 candidate vaccine and lamivudine,” Vaccine, vol. 25, no. 51, pp. 8585–8597, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. J. Heathcote, J. McHutchison, S. Lee et al., “A pilot study of the CY-1899 T-cell vaccine in subjects chronically infected with hepatitis B virus,” Hepatology, vol. 30, no. 2, pp. 531–536, 1999. View at Publisher · View at Google Scholar · View at Scopus
  70. M. Mancini-Bourgine, H. Fontaine, D. Scott-Algara, S. Pol, C. Bréchot, and M.-L. Michel, “Induction or expansion of T-cell responses by a hepatitis B DNA vaccine administered to chronic HBV carriers,” Hepatology, vol. 40, no. 4, pp. 874–882, 2004. View at Publisher · View at Google Scholar · View at Scopus
  71. S.-H. Yang, C.-G. Lee, S.-H. Park et al., “Correlation of antiviral T-cell responses with suppression of viral rebound in chronic hepatitis B carriers: a proof-of-concept study,” Gene Therapy, vol. 13, no. 14, pp. 1110–1117, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. S. Menne, J. Maschke, M. Lu, H. Grosse-Wilde, and M. Roggendorf, “T-cell response to woodchuck hepatitis virus (WHV) antigens during acute self-limited WHV infection and convalescence and after viral challenge,” Journal of Virology, vol. 72, no. 7, pp. 6083–6091, 1998. View at Google Scholar · View at Scopus
  73. I. Frank, C. Budde, M. Fiedler et al., “Acute resolving woodchuck hepatitis virus (WHV) infection is associated with a strong cytotoxic T-lymphocyte response to a single WHV core peptide,” Journal of Virology, vol. 81, no. 13, pp. 7156–7163, 2007. View at Publisher · View at Google Scholar · View at Scopus
  74. S. Menne, C. A. Roneker, B. E. Korba, J. L. Gerin, B. C. Tennant, and P. J. Cote, “Immunization with surface antigen vaccine alone and after treatment with 1-(2-fluoro-5-methyl-β-L-arabinofuranosyl)-uracil (L-FMAU) breaks humoral and cell-mediated immune tolerance in chronic woodchuck hepatitis virus infection,” Journal of Virology, vol. 76, no. 11, pp. 5305–5314, 2002. View at Publisher · View at Google Scholar · View at Scopus
  75. J. R. Rodriguez-Madoz, K. H. Liu, J. I. Quetglas et al., “Semliki forest virus expressing interleukin-12 induces antiviral and antitumoral responses in woodchucks with chronic viral hepatitis and hepatocellular carcinoma,” Journal of Virology, vol. 83, no. 23, pp. 12266–12278, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. A. Vitiello, G. Ishioka, H. M. Grey et al., “Development of a lipopeptide-based therapeutic vaccine to treat chronic HBV infection. I. Induction of a primary cytotoxic T lymphocyte response in humans,” Journal of Clinical Investigation, vol. 95, no. 1, pp. 341–349, 1995. View at Google Scholar · View at Scopus
  77. Y.-M. Wen, X.-H. Wu, D.-C. Hu, Q.-P. Zhang, and S.-Q. Guo, “Hepatitis B vaccine and anti-HBs complex as approach for vaccine therapy,” The Lancet, vol. 345, no. 8964, pp. 1575–1576, 1995. View at Google Scholar · View at Scopus
  78. X. Yao, B. Zheng, J. Zhou et al., “Therapeutic effect of hepatitis B surface antigen-antibody complex is associated with cytolytic and non-cytolytic immune responses in hepatitis B patients,” Vaccine, vol. 25, no. 10, pp. 1771–1779, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. D.-Z. Xu, K. Zhao, L.-M. Guo et al., “A randomized controlled phase IIb trial of antigen-antibody immunogenic complex therapeutic vaccine in chronic hepatitis B patients,” PLoS ONE, vol. 3, no. 7, Article ID e2565, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. H. L. Davis, C. L. Brazolot Millan, M. Mancini et al., “DNA-based immunization against hepatitis B surface antigen (HBsAg) in normal and HBsAg-transgenic mice,” Vaccine, vol. 15, no. 8, pp. 849–852, 1997. View at Publisher · View at Google Scholar · View at Scopus
  81. M. Mancini, M. Hadchouel, P. Tiollais, and M.-L. Michel, “Regulation of hepatitis B virus mRNA expression in a hepatitis B surface antigen transgenic mouse model by IFN-γ-secreting T cells after DNA-based immunization,” Journal of Immunology, vol. 161, no. 10, pp. 5564–5570, 1998. View at Google Scholar · View at Scopus
  82. A. D. Sette, C. Oseroff, J. Sidney et al., “Overcoming T cell tolerance to the hepatitis B virus surface antigen in hepatitis B virus-transgenic mice,” Journal of Immunology, vol. 166, no. 2, pp. 1389–1397, 2001. View at Google Scholar · View at Scopus
  83. P. Riedl, A. Wieland, K. Lamberth et al., “Elimination of immunodominant epitopes from multispecific DNA-based vaccines allows induction of CD8 T cells that have a striking antiviral potential,” Journal of Immunology, vol. 183, no. 1, pp. 370–380, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. M. Isogawa, Y. Furuichi, and F. V. Chisari, “Oscillating CD8+ T cell effector functions after antigen recognition in the liver,” Immunity, vol. 23, no. 1, pp. 53–63, 2005. View at Publisher · View at Google Scholar · View at Scopus
  85. M. Isogawa, M. D. Robek, Y. Furuichi, and F. V. Chisari, “Toll-like receptor signaling inhibits hepatitis B virus replication in vivo,” Journal of Virology, vol. 79, no. 11, pp. 7269–7272, 2005. View at Publisher · View at Google Scholar · View at Scopus
  86. S. L. Uprichard, B. Boyd, A. Althage, and F. V. Chisari, “Clearance of hepatitis B virus from the liver of transgenic mice by short hairpin RNAs,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 3, pp. 773–778, 2005. View at Publisher · View at Google Scholar · View at Scopus
  87. K. Kimura, K. Kakimi, S. Wieland, L. G. Guidotti, and F. V. Chisari, “Activated intrahepatic antigen-presenting cells inhibit hepatitis B virus replication in the liver of transgenic mice,” Journal of Immunology, vol. 169, no. 9, pp. 5188–5195, 2002. View at Google Scholar · View at Scopus
  88. S. Wirth, L. G. Guidotti, K. Ando, H.-J. Schlicht, and F. V. Chisari, “Breaking tolerance leads to autoantibody production but not autoimmune liver disease in hepatitis B virus envelope transgenic mice,” Journal of Immunology, vol. 154, no. 5, pp. 2504–2515, 1995. View at Google Scholar · View at Scopus
  89. J. Summers, J. M. Smolec, and R. Snyder, “A virus similar to human hepatitis B virus associated with hepatitis and hepatoma in woodchucks,” Proceedings of the National Academy of Sciences of the United States of America, vol. 75, no. 9, pp. 4533–4537, 1978. View at Google Scholar · View at Scopus
  90. Q. Di, J. Summers, J. B. Burch, and W. S. Mason, “Major differences between WHV and HBV in the regulation of transcription,” Virology, vol. 229, no. 1, pp. 25–35, 1997. View at Publisher · View at Google Scholar · View at Scopus
  91. S. Menne and P. J. Cote, “The woodchuck as an animal model for pathogenesis and therapy of chronic hepatitits B virus infection,” World Journal of Gastroenterology, vol. 13, no. 1, pp. 104–124, 2007. View at Google Scholar · View at Scopus
  92. P. J. Cote, B. E. Korba, R. H. Miller et al., “Effects of age and viral determinants on chronicity as an outcome of experimental woodchuck hepatitis virus injection,” Hepatology, vol. 31, no. 1, pp. 190–200, 2000. View at Google Scholar · View at Scopus
  93. H. Popper, L. Roth, and R. H. Purcell, “Hepatocarcinogenicity of the woodchuck hepatitis virus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 84, no. 3, pp. 866–870, 1987. View at Google Scholar · View at Scopus
  94. B. C. Tennant, I. A. Toshkov, S. F. Peek et al., “Hepatocellular carcinoma in the woodchuck model of hepatitis B virus infection,” Gastroenterology, vol. 127, pp. S283–S293, 2004. View at Publisher · View at Google Scholar · View at Scopus
  95. J. L. Gerin, P. J. Cote, B. E. Korba et al., “Hepatitis B virus and liver cancer: the woodchuck as an experimental model of hepadnavirus-induced liver cancer,” in Viral Hepatitis and Liver Disease, F. B. Hollinger, S. M. Lemon, and H. Margolis, Eds., pp. 556–559, Williams & Wilkins, Baltimore, Md, USA, 1991. View at Google Scholar
  96. M. Roggendorf and T. K. Tolle, “The woodchuck: an animal model for hepatitis B virus infection in man,” Intervirology, vol. 38, no. 1-2, pp. 100–112, 1995. View at Google Scholar · View at Scopus
  97. B. E. Korba, P. J. Cote, and J. L. Gerin, “Mitogen-induced replication of Woodchuck hepatitis virus in cultured peripheral blood lymphocytes,” Science, vol. 241, no. 4870, pp. 1213–1216, 1988. View at Google Scholar · View at Scopus
  98. P. J. Cote and J. L. Gerin, “In vitro activation of woodchuck lymphocytes measured by radiopurine incorporation and interleukin-2 production: implications for modeling immunity and therapy in hepatitis B virus infection,” Hepatology, vol. 22, no. 3, pp. 687–699, 1995. View at Publisher · View at Google Scholar · View at Scopus
  99. S. Menne, C. A. Roneker, M. Roggendorf, J. L. Gerin, P. J. Cote, and B. C. Tennant, “Deficiencies in the acute-phase cell-mediated immune response to viral antigens are associated with development of chronic woodchuck hepatitis virus infection following neonatal inoculation,” Journal of Virology, vol. 76, no. 4, pp. 1769–1780, 2002. View at Publisher · View at Google Scholar · View at Scopus
  100. M. R. Betts, J. M. Brenchley, D. A. Price et al., “Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation,” Journal of Immunological Methods, vol. 281, no. 1-2, pp. 65–78, 2003. View at Publisher · View at Google Scholar · View at Scopus
  101. V. Rubio, T. B. Stuge, N. Singh et al., “Ex vivo identification, isolation and analysis of tumor-cytolytic T cells,” Nature Medicine, vol. 9, no. 11, pp. 1377–1382, 2003. View at Publisher · View at Google Scholar · View at Scopus
  102. M. Lu and M. Roggendorf, “Evaluation of new approaches to prophylactic and therapeutic vaccinations against hepatitis B viruses in the woodchuck model,” Intervirology, vol. 44, no. 2-3, pp. 124–131, 2001. View at Publisher · View at Google Scholar · View at Scopus
  103. M. Roggendorf and M. Lu, “Therapeutic vaccination in chronic hepadnavirus infection,” in New Concepts of Antiviral Therapy, E. Dogner and A. Holzenburg, Eds., pp. 3–20, Springer, Berlin, Germany, 2006. View at Google Scholar
  104. J. Summers, “Three recently described animal virus models for human hepatitis B virus,” Hepatology, vol. 1, no. 2, pp. 179–183, 1981. View at Google Scholar · View at Scopus
  105. T. J. Liang, “Hepatitis B: the virus and disease,” Hepatology, vol. 49, no. 5, pp. S13–21, 2009. View at Google Scholar · View at Scopus
  106. M. Flajolet, P. Tiollais, M.-A. Buendia, and G. Fourel, “Woodchuck hepatitis virus enhancer I and enhancer II are both involved in N-myc2 activation in woodchuck liver tumors,” Journal of Virology, vol. 72, no. 7, pp. 6175–6180, 1998. View at Google Scholar · View at Scopus
  107. Y. Wang, S. Menne, B. H. Baldwin, B. C. Tennant, J. L. Gerin, and P. J. Cote, “Kinetics of viremia and acute liver injury in relation to outcome of neonatal woodchuck hepatitis virus infection,” Journal of Medical Virology, vol. 72, no. 3, pp. 406–415, 2004. View at Publisher · View at Google Scholar · View at Scopus
  108. S. Hervás-Stubbs, J. J. Lasarte, P. Sarobe et al., “T-helper cell response to woodchuck hepatitis virus antigens after therapeutic vaccination of chronically-infected animals treated with lamivudine,” Journal of Hepatology, vol. 35, no. 1, pp. 105–111, 2001. View at Publisher · View at Google Scholar · View at Scopus
  109. S. Menne, C. A. Roneker, B. E. Korba et al., “Breaking T cell tolerance in chronic WHV infection by vaccination with WHsAg alone and in combination with the antiviral drug L-FMAU,” Antiviral Therapy, vol. 5, p. B58, 2000. View at Google Scholar
  110. S. Menne, C. A. Roneker, B. C. Tennant, B. E. Korba, J. L. Gerin, and P. J. Cote, “Immunogenic effects of woodchuck hepatitis virus surface antigen vaccine in combination with antiviral therapy: breaking of humoral and cellular immune tolerance in chronic woodchuck hepatitis virus infection,” Intervirology, vol. 45, no. 4–6, pp. 237–250, 2002. View at Publisher · View at Google Scholar · View at Scopus
  111. B. E. Korba, P. J. Cote, S. Menne et al., “Clevudine therapy with vaccine inhibits progression of chronic hepatitis and delays onset of hepatocellular carcinoma in chronic woodchuck hepatitis virus infection,” Antiviral Therapy, vol. 9, no. 6, pp. 937–952, 2004. View at Google Scholar · View at Scopus
  112. M. Lu, L. F. He, Y. Xu et al., “Evaluation of combination therapies of chronic HBV infection with lamivudine and DNA-vaccines or antigen-antibody complexes in the woodchuck model,” The Journal of Virology, vol. 82, pp. 2598–2603, 2008. View at Google Scholar
  113. B. E. Korba, P. Cote, W. Hornbuckle et al., “Enhanced antiviral benefit of combination therapy with lamivudine and alpha interferon against WHV replication in chronic carrier woodchucks,” Antiviral Therapy, vol. 5, no. 2, pp. 95–104, 2000. View at Google Scholar · View at Scopus
  114. J. M. Cullen, D. H. Li, C. Brown et al., “Antiviral efficacy and pharmacokinetics of oral adefovir dipivoxil in chronically woodchuck hepatitis virus-infected woodchucks,” Antimicrobial Agents and Chemotherapy, vol. 45, no. 10, pp. 2740–2745, 2001. View at Publisher · View at Google Scholar · View at Scopus
  115. E. V. Genovesi, L. Lamb, I. Medina et al., “Efficacy of the carbocyclic 2-deoxyguanosine nucleoside BMS-200475 in the woodchuck model of hepatitis B virus infection,” Antimicrobial Agents and Chemotherapy, vol. 42, no. 12, pp. 3209–3217, 1998. View at Google Scholar · View at Scopus
  116. B. E. Korba, R. F. Schinazi, P. Cote, B. C. Tennant, and J. L. Gerin, “Effect of oral administration of emtricitabine on woodchuck hepatitis virus replication in chronically infected woodchucks,” Antimicrobial Agents and Chemotherapy, vol. 44, no. 6, pp. 1757–1760, 2000. View at Publisher · View at Google Scholar · View at Scopus
  117. D. N. Standring, E. G. Bridges, L. Placidi et al., “Antiviral β-L-nucleosides specific for hepatitis B virus infection,” Antiviral Chemistry and Chemotherapy, vol. 12, no. 1, supplement, pp. 119–129, 2001. View at Google Scholar · View at Scopus
  118. M. L. Bryant, E. G. Bridges, L. Placidi et al., “Antiviral L-nucleosides specific for hepatitis B virus infection,” Antimicrobial Agents and Chemotherapy, vol. 45, no. 1, pp. 229–235, 2001. View at Publisher · View at Google Scholar · View at Scopus
  119. J. R. Jacob, B. E. Korba, P. J. Cote et al., “Suppression of lamivudine-resistant B-domain mutants by adefovir dipivoxil in the woodchuck hepatitis virus model,” Antiviral Research, vol. 63, no. 2, pp. 115–121, 2004. View at Publisher · View at Google Scholar · View at Scopus
  120. S. Hervás-Stubbs, J.-J. Lasarte, P. Sarobe et al., “Therapeutic vaccination of woodchucks against chronic woodchuck hepatitis virus infection,” Journal of Hepatology, vol. 27, no. 4, pp. 726–737, 1997. View at Publisher · View at Google Scholar · View at Scopus
  121. M. Lu, R. Klaes, S. Menne et al., “Induction of antibodies to the PreS region of surface antigens of woodchuck hepatitis virus (WHV) in chronic carrier woodchucks by immunizations with WHV surface antigens,” Journal of Hepatology, vol. 39, no. 3, pp. 405–413, 2003. View at Publisher · View at Google Scholar · View at Scopus
  122. M.-L. Michel and D. Loirat, “DNA vaccines for prophylactic or therapeutic immunization against hepatitis B,” Intervirology, vol. 44, no. 2-3, pp. 78–87, 2001. View at Publisher · View at Google Scholar · View at Scopus
  123. M. Lu, G. Hilken, J. Kruppenbacher et al., “Immunization of woodchucks with plasmids expressing woodchuck hepatitis virus (WHV) core antigen and surface antigen suppresses WHV infection,” Journal of Virology, vol. 73, no. 1, pp. 281–289, 1999. View at Google Scholar · View at Scopus
  124. W. S. Mason, J. Cullen, G. Moraleda et al., “Lamivudine therapy of WHV-infected woodchucks,” Virology, vol. 245, no. 1, pp. 18–32, 1998. View at Publisher · View at Google Scholar · View at Scopus
  125. X. Danthinne and M. J. Imperiale, “Production of first generation adenovirus vectors: a review,” Gene Therapy, vol. 7, no. 20, pp. 1707–1714, 2000. View at Google Scholar · View at Scopus
  126. A. R. Pinto and H. C. Ertl, “Genetically modified adenoviruses as recombinant vaccines,” Current Topics in Virology, vol. 2, pp. 70–84, 2002. View at Google Scholar
  127. N. Tatsis and H. C. Ertl, “Adenoviruses as vaccine vectors,” Molecular Therapy, vol. 10, no. 4, pp. 616–629, 2004. View at Publisher · View at Google Scholar · View at Scopus
  128. E. Paoletti, “Applications of pox virus vectors to vaccination: an update,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 21, pp. 11349–11353, 1996. View at Publisher · View at Google Scholar · View at Scopus
  129. H. L. Robinson, “New hope for an aids vaccine,” Nature Reviews Immunology, vol. 2, no. 4, pp. 239–250, 2002. View at Google Scholar · View at Scopus
  130. M. E. Perkus, A. Piccini, B. R. Lipinskas, and E. Paoletti, “Recombinant vaccinia virus: immunization against multiple pathogens,” Science, vol. 229, no. 4717, pp. 981–984, 1985. View at Google Scholar · View at Scopus
  131. M. Sällberg, J. Hughes, A. Javadian et al., “Genetic immunization of chimpanzees chronically infected with the hepatitis B virus, using a recombinant retroviral vector encoding the hepatitis B virus core antigen,” Human Gene Therapy, vol. 9, no. 12, pp. 1719–1729, 1998. View at Google Scholar · View at Scopus
  132. S. Hacein-Bey-Abina, C. Von Kalle, M. Schmidt et al., “LMO2-Associated Clonal T Cell Proliferation in Two Patients after Gene Therapy for SCID-X1,” Science, vol. 302, no. 5644, pp. 415–419, 2003. View at Publisher · View at Google Scholar · View at Scopus
  133. K. Schwarzwaelder, S. J. Howe, M. Schmidt et al., “Gammaretrovirus-mediated correction of SCID-X1 is associated with skewed vector integration site distribution in vivo,” Journal of Clinical Investigation, vol. 117, no. 8, pp. 2241–2249, 2007. View at Publisher · View at Google Scholar · View at Scopus
  134. N. Khalighinejad, H. Hariri, O. Behnamfar, A. Yousefi, and A. Momeni, “Adenoviral gene therapy in gastric cancer: a review,” World Journal of Gastroenterology, vol. 14, no. 2, pp. 180–184, 2008. View at Publisher · View at Google Scholar · View at Scopus
  135. K. F. D. Kuhlmann, D. J. Gouma, and J. G. Wesseling, “Adenoviral gene therapy for pancreatic cancer: where do we stand?” Digestive Surgery, vol. 25, no. 4, pp. 278–292, 2008. View at Publisher · View at Google Scholar · View at Scopus
  136. K. S. Matthews, R. D. Alvarez, and D. T. Curiel, “Advancements in adenoviral based virotherapy for ovarian cancer,” Advanced Drug Delivery Reviews, vol. 61, no. 10, pp. 836–841, 2009. View at Publisher · View at Google Scholar · View at Scopus
  137. T. Wirth, H. Samaranayake, J. Pikkarainen, A. M. Määttä, and S. Ylä-Herttuala, “Clinical trials for glioblastoma multiforme using adenoviral vectors,” Current Opinion in Molecular Therapeutics, vol. 11, no. 5, pp. 485–492, 2009. View at Google Scholar · View at Scopus
  138. Z. Q. Xiang, Y. Yang, J. M. Wilson, and H. C. J. Ertl, “A replication-defective human adenovirus recombinant serves as a highly efficacious vaccine carrier,” Virology, vol. 219, no. 1, pp. 220–227, 1996. View at Publisher · View at Google Scholar · View at Scopus
  139. J. W. Shiver, T.-M. Fu, L. Chen et al., “Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity,” Nature, vol. 415, no. 6869, pp. 331–335, 2002. View at Publisher · View at Google Scholar · View at Scopus
  140. J. C. Fitzgerald, G.-P. Gao, A. Reyes-Sandoval et al., “A simian replication-defective adenoviral recombinant vaccine to HIV-1 gag,” Journal of Immunology, vol. 170, no. 3, pp. 1416–1422, 2003. View at Google Scholar · View at Scopus
  141. A. N. Zakhartchouk, S. Viswanathan, J. B. Mahony, J. Glaudei, and L. A. Babiuk, “Severe acute respiratory syndrome coronavirus nucleocapsid protein expressed by an adenovirus vector is phosphorylated and immunogenic in mice,” Journal of General Virology, vol. 86, no. 1, pp. 211–215, 2005. View at Publisher · View at Google Scholar · View at Scopus
  142. A. E. Morelli, A. T. Larregina, R. W. Ganster et al., “Recombinant adenovirus induces maturation of dendritic cells via an NF-κB-dependent pathway,” Journal of Virology, vol. 74, no. 20, pp. 9617–9628, 2000. View at Publisher · View at Google Scholar · View at Scopus
  143. C. Pasare and R. Medzhitov, “Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells,” Science, vol. 299, no. 5609, pp. 1033–1036, 2003. View at Publisher · View at Google Scholar · View at Scopus
  144. S. Wan, C. Xia, and L. Morel, “IL-6 produced by dendritic cells from lupus-prone mice inhibits CD4+ CD25+ T cell regulatory functions,” Journal of Immunology, vol. 178, no. 1, pp. 271–279, 2007. View at Google Scholar · View at Scopus
  145. S. F. Farina, G.-P. Gao, Z. Q. Xiang et al., “Replication-defective vector based on a chimpanzee adenovirus,” Journal of Virology, vol. 75, no. 23, pp. 11603–11613, 2001. View at Publisher · View at Google Scholar · View at Scopus
  146. J. Cohen, “Did Merck's failed HIV vaccine cause harm?” Science, vol. 318, no. 5853, pp. 1048–1049, 2007. View at Publisher · View at Google Scholar · View at Scopus
  147. S. P. Buchbinder, D. V. Mehrotra, A. Duerr et al., “Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial,” The Lancet, vol. 372, no. 9653, pp. 1881–1893, 2008. View at Publisher · View at Google Scholar · View at Scopus
  148. M. J. McElrath, S. C. De Rosa, Z. Moodie et al., “HIV-1 vaccine-induced immunity in the test-of-concept Step Study: a case-cohort analysis,” The Lancet, vol. 372, no. 9653, pp. 1894–1905, 2008. View at Publisher · View at Google Scholar · View at Scopus
  149. W. Gao, P. D. Robbins, and A. Gambotto, “Human adenovirus type 35: nucleotide sequence and vector development,” Gene Therapy, vol. 10, no. 23, pp. 1941–1949, 2003. View at Publisher · View at Google Scholar · View at Scopus
  150. D. H. Barouch, M. G. Pau, J. H. H. V. Custers et al., “Immunogenicity of recombinant adenovirus serotype 35 vaccine in the presence of pre-existing anti-Ad5 immunity,” Journal of Immunology, vol. 172, no. 10, pp. 6290–6297, 2004. View at Google Scholar · View at Scopus
  151. D. S. Bangari and S. K. Mittal, “Development of nonhuman adenoviruses as vaccine vectors,” Vaccine, vol. 24, no. 7, pp. 849–862, 2006. View at Publisher · View at Google Scholar · View at Scopus
  152. D. R. Casimiro, F. Wang, W. A. Schleif et al., “Attenuation of simian immunodeficiency virus SIVmac239 infection by prophylactic immunization with DNA and recombinant adenoviral vaccine vectors expressing Gag,” Journal of Virology, vol. 79, no. 24, pp. 15547–15555, 2005. View at Publisher · View at Google Scholar · View at Scopus
  153. K.-Q. Xin, N. Jounai, K. Someya et al., “Prime-boost vaccination with plasmid DNA and a chimeric adenovirus type 5 vector with type 35 fiber induces protective immunity against HIV,” Gene Therapy, vol. 12, no. 24, pp. 1769–1777, 2005. View at Publisher · View at Google Scholar · View at Scopus
  154. N. J. Sullivan, A. Sanchez, P. E. Rollin, Z.-Y. Yang, and G. J. Nabel, “Development of a preventive vaccine for Ebola virus infection in primates,” Nature, vol. 408, no. 6812, pp. 605–609, 2000. View at Publisher · View at Google Scholar · View at Scopus
  155. H. Kibuuka, R. Kimutai, L. Maboko et al., “A phase 1/2 study of a multiclade HIV-1 DNA plasmid prime and recombinant adenovirus serotype 5 boost vaccine in HIV-uninfected east africans (RV 172),” Journal of Infectious Diseases, vol. 201, no. 4, pp. 600–607, 2010. View at Publisher · View at Google Scholar · View at Scopus
  156. S. Hermening, S. Kügler, M. Bähr, and S. Isenmann, “Increased protein expression from adenoviral shuttle plasmids and vectors by insertion of a small chimeric intron sequence,” Journal of Virological Methods, vol. 122, no. 1, pp. 73–77, 2004. View at Publisher · View at Google Scholar · View at Scopus
  157. F. Sakurai, K. Kawabata, T. Yamaguchi, T. Hayakawa, and H. Mizuguchi, “Optimization of adenovirus serotype 35 vectors for efficient transduction in human hematopoietic progenitors: comparison of promoter activities,” Gene Therapy, vol. 12, no. 19, pp. 1424–1433, 2005. View at Publisher · View at Google Scholar · View at Scopus
  158. H.-W. Li, Y.-X. Gao, M. K. Raizada, and C. Sumners, “Intronic enhancement of angiotensin II type 2 receptor transgene expression in vitro and in vivo,” Biochemical and Biophysical Research Communications, vol. 336, no. 1, pp. 29–35, 2005. View at Publisher · View at Google Scholar · View at Scopus
  159. Q. Li, M. A. Kay, M. Finegold, L. D. Stratford-Perricaudet, and S. L. C. Woo, “Assessment of recombinant adenoviral vectors for hepatic gene therapy,” Human Gene Therapy, vol. 4, no. 4, pp. 403–409, 1993. View at Google Scholar · View at Scopus
  160. H. A. Jaffe, G. Danel, G. Longenecker et al., “Adenovirus-mediated in vivo gene transfer and expression in normal rat liver,” Nature Genetics, vol. 1, no. 5, pp. 372–378, 1992. View at Google Scholar · View at Scopus
  161. V. Schmitz, C. Qian, J. Ruiz et al., “Gene therapy for liver diseases: recent strategies for treatment of viral hepatitis and liver malignancies,” Gut, vol. 50, no. 1, pp. 130–135, 2002. View at Publisher · View at Google Scholar · View at Scopus
  162. A. Józkowicz and J. Dulak, “Helper-dependent adenoviral vectors in experimental gene therapy,” Acta Biochimica Polonica, vol. 52, no. 3, pp. 589–599, 2005. View at Google Scholar · View at Scopus
  163. M. Fiedler, F. Rödicker, V. Salucci et al., “Helper-dependent adenoviral vector-mediated delivery of woodchuck-specific genes for alpha interferon (IFN-α) and IFN-γ: IFN-α but not IFN-γ reduces woodchuck hepatitis virus replication in chronic infection in vivo,” Journal of Virology, vol. 78, no. 18, pp. 10111–10121, 2004. View at Publisher · View at Google Scholar · View at Scopus
  164. A. C. Jacquard, M. Nassal, C. Pichoud et al., “Effect of a combination of clevudine and emtricitabine with adenovirus-mediated delivery of gamma interferon in the woodchuck model of hepatitis B virus infection,” Antimicrobial Agents and Chemotherapy, vol. 48, no. 7, pp. 2683–2692, 2004. View at Publisher · View at Google Scholar · View at Scopus
  165. Y. Zhu, J. M. Cullen, C. E. Aldrich et al., “Adenovirus-based gene therapy during clevudine treatment of woodchucks chronically infected with woodchuck hepatitis virus,” Virology, vol. 327, no. 1, pp. 26–40, 2004. View at Publisher · View at Google Scholar · View at Scopus
  166. J. Crettaz, I. Otano, L. Ochoa et al., “Treatment of chronic viral hepatitis in woodchucks by prolonged intrahepatic expression of interleukin-12,” Journal of Virology, vol. 83, no. 6, pp. 2663–2674, 2009. View at Publisher · View at Google Scholar · View at Scopus
  167. R. Bilbao, R. Gérolami, M.-P. Bralet et al., “Transduction efficacy, antitumoral effect, and toxicity of adenovirus- mediated herpes simplex virus thymidine kinase/ganciclovir therapy of hepatocellular carcinoma: the woodchuck animal model,” Cancer Gene Therapy, vol. 7, no. 5, pp. 657–662, 2000. View at Google Scholar · View at Scopus
  168. B. M. Pützer, T. Stiewe, F. Rödicker et al., “Large nontransplanted hepatocellular carcinoma in woodchucks: treatment with adenovirus-mediated delivery of interleukin 12/B7.1 genes,” Journal of the National Cancer Institute, vol. 93, no. 6, pp. 472–479, 2001. View at Google Scholar · View at Scopus
  169. V. Salucci, M. Lu, L. Aurisicchio, N. La Monica, M. Roggendorf, and F. Palombo, “Expression of a new woodchuck IFN-α gene by a helper-dependent adenoviral vector in woodchuck hepatitis virus-infected primary hepatocytes,” Journal of Interferon and Cytokine Research, vol. 22, no. 10, pp. 1027–1034, 2002. View at Publisher · View at Google Scholar · View at Scopus
  170. T. Zhou, J.-T. Guo, F. A. Nunes et al., “Combination therapy with lamivudine and adenovirus causes transient suppression of chronic woodchuck hepatitis virus infections,” Journal of Virology, vol. 74, no. 24, pp. 11754–11763, 2000. View at Publisher · View at Google Scholar · View at Scopus
  171. M. Lu, B. Lohrengel, G. Hilken, T. Kemper, and M. Roggendorf, “Woodchuck gamma interferon upregulates major histocompatibility complex class I transcription but is unable to deplete woodchuck hepatitis virus replication intermediates and RNAs in persistently infected woodchuck primary hepatocytes,” Journal of Virology, vol. 76, no. 1, pp. 58–67, 2002. View at Publisher · View at Google Scholar · View at Scopus
  172. J.-T. Guo, H. Zhou, C. Liu et al., “Apoptosis and regeneration of hepatocytes during recovery from transient hepadnavirus infections,” Journal of Virology, vol. 74, no. 3, pp. 1495–1505, 2000. View at Publisher · View at Google Scholar · View at Scopus
  173. T. I. Michalak, P. D. Hodgson, and N. D. Churchill, “Posttranscriptional inhibition of class I major histocompatibility I complex presentation on hepatocytes and lymphoid cells in chronic woodchuck hepatitis virus infection,” Journal of Virology, vol. 74, no. 10, pp. 4483–4494, 2000. View at Publisher · View at Google Scholar · View at Scopus
  174. G. Trinchieri, “Interleukin-12 and the regulation of innate resistance and adaptive immunity,” Nature Reviews Immunology, vol. 3, no. 2, pp. 133–146, 2003. View at Publisher · View at Google Scholar · View at Scopus
  175. E. Vattemi and P. P. Claudio, “Adenoviral gene therapy in head and neck cancer,” Drug News and Perspectives, vol. 19, no. 6, pp. 329–337, 2006. View at Publisher · View at Google Scholar · View at Scopus
  176. K. S. Matthews, R. D. Alvarez, and D. T. Curiel, “Advancements in adenoviral based virotherapy for ovarian cancer,” Advanced Drug Delivery Reviews, vol. 61, no. 10, pp. 836–841, 2009. View at Publisher · View at Google Scholar · View at Scopus
  177. K. F. D. Kuhlmann, D. J. Gouma, and J. G. Wesseling, “Adenoviral gene therapy for pancreatic cancer: where do we stand?” Digestive Surgery, vol. 25, no. 4, pp. 278–292, 2008. View at Publisher · View at Google Scholar · View at Scopus
  178. N. Khalighinejad, H. Hariri, O. Behnamfar, A. Yousefi, and A. Momeni, “Adenoviral gene therapy in gastric cancer: a review,” World Journal of Gastroenterology, vol. 14, no. 2, pp. 180–184, 2008. View at Publisher · View at Google Scholar · View at Scopus
  179. C. L. Addison, J. L. Bramson, M. M. Hitt, W. J. Muller, J. Gauldie, and F. L. Graham, “Intratumoral coinjection of adenoviral vectors expressing IL-2 and IL-12 results in enhanced frequency of regression of injected and untreated distal tumors,” Gene Therapy, vol. 5, no. 10, pp. 1400–1409, 1998. View at Google Scholar · View at Scopus
  180. J. L. Bramson, M. Hitt, C. L. Addison, W. J. Muller, J. Gauldie, and F. L. Graham, “Direct intratumoral injection of an adenovirus expressing interleukin-12 induces regression and long-lasting immunity that is associated with highly localized expression of interleukin-12,” Human Gene Therapy, vol. 7, no. 16, pp. 1995–2002, 1996. View at Google Scholar · View at Scopus
  181. B. M. Pützer, M. Hitt, W. J. Muller, P. Emtage, J. Gauldie, and F. L. Graham, “Interleukin 12 and B7-1 costimulatory molecule expressed by an adenovirus vector act synergistically to facilitate tumor regression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 20, pp. 10889–10894, 1997. View at Publisher · View at Google Scholar · View at Scopus
  182. M. Malvicini, M. Rizzo, L. Alaniz et al., “A novel synergistic combination of cyclophosphamide and gene transfer of interleukin-12 eradicates colorectal carcinoma in mice,” Clinical Cancer Research, vol. 15, no. 23, pp. 7256–7265, 2009. View at Publisher · View at Google Scholar · View at Scopus
  183. S. Bortolanza, M. Bunuales, I. Otano et al., “Treatment of pancreatic cancer with an oncolytic adenovirus expressing interleukin-12 in Syrian hamsters,” Molecular Therapy, vol. 17, no. 4, pp. 614–622, 2009. View at Publisher · View at Google Scholar · View at Scopus
  184. M. Drozdzik, C. Qian, X. Xie et al., “Combined gene therapy with suicide gene and interleukin-12 is more efficient than therapy with one gene alone in a murine model of hepatocellular carcinoma,” Journal of Hepatology, vol. 32, no. 2, pp. 279–286, 2000. View at Publisher · View at Google Scholar · View at Scopus
  185. M. M. B. Rodríguez, S.-M. Ryu, C. Qian et al., “Immunotherapy of murine hepatocellular carcinoma by α-fetoprotein DNA vaccination combined with adenovirus-mediated chemokine and cytokine expression,” Human Gene Therapy, vol. 19, no. 7, pp. 753–759, 2008. View at Publisher · View at Google Scholar · View at Scopus
  186. B. Gückel, G. C. Meyer, W. Rudy et al., “Interleukin-12 requires initial CD80-mediated T-cell activation to support immune responses toward human breast and ovarian carcinoma,” Cancer Gene Therapy, vol. 6, no. 3, pp. 228–237, 1999. View at Google Scholar · View at Scopus
  187. M. Kuiper, R. Sanches, Y.-J. Bignon, and F. Farzaneh, “B7.1 and Cytokines: synergy in cancer gene therapy,” Advances in Experimental Medicine and Biology, vol. 465, pp. 381–390, 2000. View at Google Scholar · View at Scopus
  188. J. Wu, Z. Meng, M. Jiang et al., “Hepatitis B virus suppresses toll-like receptor-mediated innate immune responses in murine parenchymal and nonparenchymal liver cells,” Hepatology, vol. 49, no. 4, pp. 1132–1140, 2009. View at Publisher · View at Google Scholar · View at Scopus
  189. K. Visvanathan, N. A. Skinner, A. J. V. Thompson et al., “Regulation of Toll-like receptor-2 expression in chronic hepatitis B by the precore protein,” Hepatology, vol. 45, no. 1, pp. 102–110, 2007. View at Publisher · View at Google Scholar · View at Scopus
  190. Z. Chen, Y. Cheng, Y. Xu et al., “Expression profiles and function of Toll-like receptors 2 and 4 in peripheral blood mononuclear cells of chronic hepatitis B patients,” Clinical Immunology, vol. 128, no. 3, pp. 400–408, 2008. View at Publisher · View at Google Scholar · View at Scopus