Table of Contents
Hepatitis Research and Treatment
Volume 2011 (2011), Article ID 367908, 8 pages
http://dx.doi.org/10.1155/2011/367908
Review Article

Effects of HBV Genetic Variability on RNAi Strategies

1Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
2Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand

Received 31 January 2011; Accepted 15 April 2011

Academic Editor: Patrick Soussan

Copyright © 2011 Nattanan Panjaworayan and Chris M. Brown. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. S. Lee, T. Dohjima, G. Bauer et al., “Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells,” Nature Biotechnology, vol. 20, no. 5, pp. 500–505, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. J. M. Jacque, K. Triques, and M. Stevenson, “Modulation of HIV-1 replication by RNA interference,” Nature, vol. 418, no. 6896, pp. 435–438, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. J. A. Wilson, S. Jayasena, A. Khvorova et al., “RNA interference blocks gene expression and RNA synthesis from hepatitis C replicons propagated in human liver cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 5, pp. 2783–2788, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. J. S. Pan, X. Z. Wang, and J. L. Ren, “Long-term RNA interference and its application to hepatitis B virus,” Journal of Digestive Diseases, vol. 10, no. 3, pp. 165–171, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. P. Arbuthnot, V. Longshaw, T. Naidoo, and M. S. Weinberg, “Opportunities for treating chronic hepatitis B and C virus infection using RNA interference,” Journal of Viral Hepatitis, vol. 14, no. 7, pp. 447–459, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. P. Arbuthnot, “Harnessing RNA interference for the treatment of viral infections,” Drug News and Perspectives, vol. 23, no. 6, pp. 341–350, 2010. View at Publisher · View at Google Scholar · View at PubMed
  7. D. Sun, C. Rösler, K. Kidd-Ljunggren, and M. Nassal, “Quantitative assessment of the antiviral potencies of 21 shRNA vectors targeting conserved, including structured, hepatitis B virus sites,” Journal of Hepatology, vol. 52, no. 6, pp. 817–826, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. A. P. McCaffrey, “RNA interference inhibitors of hepatitis B virus,” Annals of the New York Academy of Sciences, vol. 1175, pp. 15–23, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. D. Grimm and M. A. Kay, “Therapeutic short hairpin RNA expression in the liver: viral targets and vectors,” Gene Therapy, vol. 13, no. 6, pp. 563–575, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. H. L. Wu, L. I. R. Huang, C. C. Huang et al., “RNA interference-mediated control of hepatitis B virus and emergence of resistant mutant,” Gastroenterology, vol. 128, no. 3, pp. 708–716, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Grimm, K. L. Streetz, C. L. Jopling et al., “Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways,” Nature, vol. 441, no. 7092, pp. 537–541, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. D. Grimm, L. Wang, J. S. Lee et al., “Argonaute proteins are key determinants of RNAi efficacy, toxicity, and persistence in the adult mouse liver,” Journal of Clinical Investigation, vol. 120, no. 9, pp. 3106–3119, 2010. View at Publisher · View at Google Scholar · View at PubMed
  13. Y. L. Zhang, T. Cheng, Y. J. Cai et al., “RNA Interference inhibits hepatitis B virus of different genotypes in vitro and in vivo,” BMC Microbiology, vol. 10, article 214, 2010. View at Publisher · View at Google Scholar · View at PubMed
  14. N. Panjaworayan, S. Payungporn, Y. Poovorawan, and C. M. Brown, “Identification of an effective siRNA target site and functional regulatory elements, within the hepatitis B virus posttranscriptional regulatory element,” Virology Journal, vol. 7, atricle 216, 2010. View at Publisher · View at Google Scholar · View at PubMed
  15. J. M. Bosher and M. Labouesse, “RNA interference: genetic wand and genetic watchdog,” Nature Cell Biology, vol. 2, no. 2, pp. E31–E36, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. N. Ramadan, I. Flockhart, M. Booker, N. Perrimon, and B. Mathey-Prevot, “Design and implementation of high-throughput RNAi screens in cultured Drosophila cells,” Nature Protocols, vol. 2, no. 9, pp. 2245–2264, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. A. R. Naqvi, MD. N. Islam, N. R. Choudhury, and Q. M. R. Haq, “The fascinating world of RNA interference,” International Journal of Biological Sciences, vol. 5, no. 2, pp. 97–117, 2009. View at Google Scholar · View at Scopus
  18. D. P. Bartel, “MicroRNAs: genomics, biogenesis, mechanism, and function,” Cell, vol. 116, no. 2, pp. 281–297, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Khvorova, A. Reynolds, and S. D. Jayasena, “Functional siRNAs and miRNAs exhibit strand bias,” Cell, vol. 115, no. 2, pp. 209–216, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. D. S. Schwarz, G. Hutvágner, T. Du, Z. Xu, N. Aronin, and P. D. Zamore, “Asymmetry in the assembly of the RNAi enzyme complex,” Cell, vol. 115, no. 2, pp. 199–208, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Parrish, J. Fleenor, S. Xu, C. Mello, and A. Fire, “Functional anatomy of a dsRNA trigger: differential requirement for the two trigger strands in RNA interference,” Molecular Cell, vol. 6, no. 5, pp. 1077–1087, 2000. View at Google Scholar · View at Scopus
  22. S. M. Elbashir, J. Harborth, W. Lendeckel, A. Yalcin, K. Weber, and T. Tuschl, “Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells,” Nature, vol. 411, no. 6836, pp. 494–498, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. A. Fire, S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver, and C. C. Mello, “Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans,” Nature, vol. 391, no. 6669, pp. 806–811, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. A. Ely, T. Naidoo, S. Mufamadi, C. Crowther, and P. Arbuthnot, “Expressed anti-HBV primary microRNA shuttles inhibit viral replication efficiently in vitro and in vivo,” Molecular Therapy, vol. 16, no. 6, pp. 1105–1112, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. M. H. Han, S. Goud, L. Song, and N. Fedoroff, “The Arabidopsis double-stranded RNA-binding protein HYL1 plays a role in microRNA-mediated gene regulation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 4, pp. 1093–1098, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. Y. Lee, C. Ahn, J. Han et al., “The nuclear RNase III Drosha initiates microRNA processing,” Nature, vol. 425, no. 6956, pp. 415–419, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. K. M. Bollman, M. J. Aukerman, M. Y. Park, C. Hunter, T. Z. Berardini, and S. R. Poethig, “HASTY, the Arabidopsis ortholog of exportin 5/MSN5, regulates phase change and morphogenesis,” Development, vol. 130, no. 8, pp. 1493–1504, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. S. M. Beverley, “Protozomics: trypanosomatid parasite genetics comes of age,” Nature Reviews Genetics, vol. 4, no. 1, pp. 11–19, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. V. Ambros, B. Bartel, D. P. Bartel et al., “A uniform system for microRNA annotation,” RNA, vol. 9, no. 3, pp. 277–279, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. P. T. Nelson, A. G. Hatzigeorgiou, and Z. Mourelatos, “miRNP:mRNA association in polyribosomes in a human neuronal cell line,” RNA, vol. 10, no. 3, pp. 387–394, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. D. G. Hendrickson, D. J. Hogan, H. L. McCullough et al., “Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA,” PLoS Biology, vol. 7, no. 11, Article ID e1000238, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. H. Guo, N. T. Ingolia, J. S. Weissman, and D. P. Bartel, “Mammalian microRNAs predominantly act to decrease target mRNA levels,” Nature, vol. 466, no. 7308, pp. 835–840, 2010. View at Publisher · View at Google Scholar · View at PubMed
  33. D. Jones, “Teaming up to tackle RNAi delivery challenge,” Nature Reviews Drug Discovery, vol. 8, no. 7, pp. 525–526, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. M. Sioud and D. R. Sørensen, “Cationic liposome-mediated delivery of siRNAs in adult mice,” Biochemical and Biophysical Research Communications, vol. 312, no. 4, pp. 1220–1225, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. L. Li and Y. U. Shen, “Overcoming obstacles to develop effective and safe siRNA therapeutics,” Expert Opinion on Biological Therapy, vol. 9, no. 5, pp. 609–619, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. J. K. Watts, N. Choubdar, K. Sadalapure et al., “2-Fluoro-4-thioarabino-modified oligonucleotides: conformational switches linked to siRNA activity,” Nucleic Acids Research, vol. 35, no. 5, pp. 1441–1451, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. T. Shiraishi, R. Hamzavi, and P. E. Nielsen, “Subnanomolar antisense activity of phosphonate-peptide nucleic acid (PNA) conjugates delivered by cationic lipids to HeLa cells,” Nucleic Acids Research, vol. 36, no. 13, pp. 4424–4432, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. T. Hosono, H. Mizuguchi, K. Katayama et al., “Adenovirus vector-mediated doxycycline-inducible RNA interference,” Human Gene Therapy, vol. 15, no. 8, pp. 813–819, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. L. Deng, G. Li, L. Xi et al., “Hepatitis B virus inhibition in mice by lentiviral vector mediated short hairpin RNA,” BMC Gastroenterology, vol. 9, article 73, p. 73, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. Y. Sun, Z. Li, L. Li, J. Li, X. Liu, and W. Li, “Effective inhibition of hepatitis B virus replication by small interfering RNAs expressed from human foamy virus vectors,” International Journal of Molecular Medicine, vol. 19, no. 4, pp. 705–711, 2007. View at Google Scholar · View at Scopus
  41. G. Doitsh and Y. Shaul, “A long HBV transcript encoding pX is inefficiently exported from the nucleus,” Virology, vol. 309, no. 2, pp. 339–349, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. D. Siolas, C. Lerner, J. Burchard et al., “Synthetic shRNAs as potent RNAi triggers,” Nature Biotechnology, vol. 23, no. 2, pp. 227–231, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. A. V. Vlassov, B. Korba, K. Farrar et al., “shRNAs targeting hepatitis C: effects of sequence and structural features, and comparison with siRNA,” Oligonucleotides, vol. 17, no. 2, pp. 223–236, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. A. Reynolds, D. Leake, Q. Boese, S. Scaringe, W. S. Marshall, and A. Khvorova, “Rational siRNA design for RNA interference,” Nature Biotechnology, vol. 22, no. 3, pp. 326–330, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. J. C. Giering, D. Grimm, T. A. Storm, and M. A. Kay, “Expression of shRNA from a tissue-specific pol II promoter is an effective and safe RNAi therapeutic,” Molecular Therapy, vol. 16, no. 9, pp. 1630–1636, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. A. Chen, Y. F. Kao, and C. M. Brown, “Translation of the first upstream ORF in the hepatitis B virus pregenomic RNA modulates translation at the core and polymerase initiation codons,” Nucleic Acids Research, vol. 33, no. 4, pp. 1169–1181, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. C. Seeger and W. S. Mason, “Hepatitis B virus biology,” Microbiology and Molecular Biology Reviews, vol. 64, no. 1, pp. 51–68, 2000. View at Google Scholar · View at Scopus
  48. H. Norder, A. M. Couroucé, P. Coursaget et al., “Genetic diversity of hepatitis B virus strains derived worldwide: genotypes, subgenotypes, and HBAg subtypes,” Intervirology, vol. 47, no. 6, pp. 289–309, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. S. Schaefer, “Hepatitis B virus taxonomy and hepatitis B virus genotypes,” World Journal of Gastroenterology, vol. 13, no. 1, pp. 14–21, 2007. View at Google Scholar · View at Scopus
  50. S.-Y. Rhee, S. Margeridon-Thermet, M. H. Nguyen et al., “Hepatitis B virus reverse transcriptase sequence variant database for sequence analysis and mutation discovery,” Antiviral Research, vol. 88, no. 3, pp. 269–275, 2010. View at Publisher · View at Google Scholar · View at PubMed
  51. C. C. Chen, C. P. Sun, H. I. Ma et al., “Comparative study of anti-hepatitis B virus RNA interference by double-stranded adeno-associated virus serotypes 7, 8, and 9,” Molecular Therapy, vol. 17, no. 2, pp. 352–359, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. Y. U. F. Gao, L. I. Yu, W. Wei, J. B. Li, Q. L. Luo, and J. I. L. Shen, “Inhibition of hepatitis B virus gene expression and replication by artificial microRNA,” World Journal of Gastroenterology, vol. 14, no. 29, pp. 4684–4689, 2008. View at Publisher · View at Google Scholar
  53. J. Peng, Y. Zhao, J. Mai et al., “Inhibition of hepatitis B virus replication by various RNAi constructs and their pharmacodynamic properties,” Journal of General Virology, vol. 86, no. 12, pp. 3227–3234, 2005. View at Publisher · View at Google Scholar · View at PubMed
  54. F. Kurbanov, Y. Tanaka, A. Kramvis, P. Simmonds, and M. Mizokami, “When should "I" consider a new hepatitis B virus genotype?” Journal of Virology, vol. 82, no. 16, pp. 8241–8242, 2008. View at Publisher · View at Google Scholar · View at PubMed
  55. M. Buti, F. Rodriguez-Frias, R. Jardi, and R. Esteban, “Hepatitis B virus genome variability and disease progression: the impact of pre-core mutants and HBV genotypes,” Journal of Clinical Virology, vol. 34, supplement 1, pp. S79–S82, 2005. View at Publisher · View at Google Scholar
  56. S. M. Jazayeri, S. M. Alavian, and W. F. Carman, “Hepatitis B virus: origin and evolution,” Journal of Viral Hepatitis, vol. 17, no. 4, pp. 229–235, 2010. View at Publisher · View at Google Scholar · View at PubMed
  57. E. M. Westerhout, M. Ooms, M. Vink, A. T. Das, and B. Berkhout, “HIV-1 can escape from RNA interference by evolving an alternative structure in its RNA genome,” Nucleic Acids Research, vol. 33, no. 2, pp. 796–804, 2005. View at Publisher · View at Google Scholar · View at PubMed
  58. D. Boden, O. Pusch, and B. Ramratnam, “Overcoming HIV-1 resistance to RNA interference,” Frontiers in Bioscience, vol. 12, pp. 3104–3116, 2007. View at Publisher · View at Google Scholar
  59. M. Solmone, D. Vincenti, M. C. F. Prosperi, A. Bruselles, G. Ippolito, and M. R. Capobianchi, “Use of massively parallel ultradeep pyrosequencing to characterize the genetic diversity of hepatitis B virus in drug-resistant and drug-naive patients and to detect minor variants in reverse transcriptase and hepatitis B S antigen,” Journal of Virology, vol. 83, no. 4, pp. 1718–1726, 2009. View at Publisher · View at Google Scholar · View at PubMed
  60. S. Margeridon-Thermet, N. S. Shulman, A. Ahmed et al., “Ultra-deep pyrosequencing of hepatitis b virus quasispecies from nucleoside and nucleotide reverse-transcriptase inhibitor (NRTI)-treated patients and NRTI-naive patients,” Journal of Infectious Diseases, vol. 199, no. 9, pp. 1275–1285, 2009. View at Publisher · View at Google Scholar · View at PubMed
  61. T. Pollicino, G. Isgrò, R. Di Stefano et al., “Variability of reverse transcriptase and overlapping S gene in hepatitis B virus isolates from untreated and lamivudine-resistant chronic hepatitis B patients,” Antiviral Therapy, vol. 14, no. 5, pp. 649–654, 2009. View at Google Scholar
  62. K. L. Wu, X. Zhang, J. Zhang et al., “Inhibition of Hepatitis B virus gene expression by single and dual small interfering RNA treatment,” Virus Research, vol. 112, no. 1-2, pp. 100–107, 2005. View at Publisher · View at Google Scholar · View at PubMed
  63. Z. Li, M. L. He, H. Yao et al., “Inhibition of HBV replication and gene expression in vitro and in vivo with a single AAV vector delivering two shRNA molecules,” BMB Reports, vol. 42, no. 1, pp. 59–64, 2009. View at Google Scholar
  64. X. M. Xin, G. Q. Li, Y. Y. Jin, M. Zhuang, and D. I. Li, “Combination of small interfering RNAs mediates greater suppression on hepatitis B virus cccDNA in HepG2.2.15 cells,” World Journal of Gastroenterology, vol. 14, no. 24, pp. 3849–3854, 2008. View at Publisher · View at Google Scholar