Table of Contents Author Guidelines Submit a Manuscript
International Journal of Agronomy
Volume 2010, Article ID 365249, 7 pages
http://dx.doi.org/10.1155/2010/365249
Research Article

Assessing Rainfall Erosivity with Artificial Neural Networks for the Ribeira Valley, Brazil

1Campus Experimental de Registro, UNESP-Universidade Estadual Paulista, 11900-000 Registro, SP, Brazil
2Department of Soil Science, UFLA, Caixa Postal 3037, 37200-000 Lavras, MG, Brazil
3Department of Phytopathology, UFLA, Caixa Postal 3037, 37200-000 Lavras, MG, Brazil

Received 17 March 2010; Revised 22 June 2010; Accepted 14 July 2010

Academic Editor: Bernd Lennartz

Copyright © 2010 Reginald B. Silva et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. L. Rufino, R. C. M. Biscaia, and G. H. Merten, “Determinação do potencial erosivo da chuva do Estado do Paraná, através de pluviometria: terceira aproximação,” Revista Brasileira de Ciência do Solo, vol. 17, pp. 934–444, 1993. View at Google Scholar
  2. M. C. Moreira, R. A. Cecílio, F. A. C. Pinto, and F. F. Pruski, “Estimates of rainfall erosivity in São Paulo state by an artificial neural network,” Revista Brasileira de Ciencia do Solo, vol. 30, no. 6, pp. 1069–1076, 2006. View at Google Scholar · View at Scopus
  3. W. H. Wischmeier and D. D. Smith, Predicting Rainfail Erosion Loses—A Guide to Conservation Planning, vol. 537 of Agriculture Handbook, USDA, Washington, DC, USA, 1978.
  4. W. H. Wischmeier, “A rainfall erosion index for a universal soil: loss equation,” Soil Science Society of America Proceedings, vol. 23, no. 3, pp. 246–249, 1959. View at Google Scholar
  5. D. Moreti, A. R. Mannige, and M. P. Carvalho, “Fator erosividade da chuva para o município de Pedrinhas Paulista, estado de São Paulo,” Acta Scientiarum, vol. 25, no. 1, pp. 137–145, 2003. View at Google Scholar
  6. J. Bertoni and F. L. Neto, Conservação do Solo, Ícone, São Paulo, Brazil, 2nd edition, 1990.
  7. F. Lombardi Neto and W. C. Moldenhauer, “Erosividade da chuva: sua distribuição e relação com perdas de solo em Campinas, SP,” Bragantia, vol. 51, no. 2, pp. 189–196, 1992. View at Google Scholar · View at Scopus
  8. R. B. Silva, P. Iori, and F. A. M. Silva, “Proposição e validações de equações para estimativa da erosividade de dois municípios do estado de São Paulo,” Irrigation Revista, vol. 14, no. 4, pp. 533–547, 2009. View at Google Scholar
  9. Erosividade. Software. Versão 1.0, GPRH / IAC, Viçosa, MG, 1999.
  10. A. M. Silva, “Rainfall erosivity map for Brazil,” Catena, vol. 57, no. 3, pp. 251–259, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. T. M. Mitchell, Machine Learning, MacGrawn-Hill, Boston, Mass, USA, 1998.
  12. M. Persson, B. Sivakumar, R. Berndtsson, O. H. Jacobsen, and P. Schjønning, “Predicting the dielectric constant-water content relationship using artificial neural networks,” Soil Science Society of America Journal, vol. 66, no. 5, pp. 1424–1429, 2002. View at Google Scholar · View at Scopus
  13. S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition, 1999.
  14. F. Sárközy, “GIS functions—interpolation,” Periodica Polytechnica, vol. 43, no. 1, pp. 63–86, 1999. View at Google Scholar · View at Scopus
  15. B. Li, Spatial interpolation of weather variables using artificial neural networks, Tese de Mestrado, University of Georgia, Athens, Greece, 2002.
  16. M. T. Hagan, H. B. Demuth, and M. Beale, Neural Network Design, PWS, Boston, Mass, USA, 1996.
  17. N. S. Saito, R. A. Cecílio, J. E. M. Pezzopane, and J. S. Faria, “Estimativa da erosividade da chuva para o estado do Espírito Santo,” in 11th Encontro Latino Americano de Iniciação Científica e VII Encontro Latino Americano de Pós-Graduação—Universidade do Vale do Paraíba, pp. 2250–2253, São José dos Campos, Anais, Spain, 2007.
  18. A. P. Camargo and P. C. Sentelhas, “Avaliação do desempenho de diferentes métodos de estimativa da evapotranspiração potencial no Estado de São Paulo, Brasil,” Revista Brasileira de Agrometeorologia, vol. 5, no. 1, pp. 89–97, 1997. View at Google Scholar
  19. D. N. Moriasi, J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, and T. L. Veith, “Model evaluation guidelines for systematic quantification of accuracy in watershed simulations,” Transactions of American Society of Agricultural and Biological Engineers, vol. 50, no. 3, pp. 885–900, 2007. View at Google Scholar · View at Scopus
  20. D. A. Romão, Vale do Ribeira: um Ensaio para o Desenvolvimento das Comunidades Rurais, Ministério do Desenvolvimento Agrário, Núcleo de Estudos Agrários e Desenvolvimento Rural (NEAD Debate; 11), Brasília, Brazil, 2006.
  21. C. J. Willmott, “On the validation of models,” Physical Geography, vol. 2, no. 2, pp. 184–194, 1981. View at Google Scholar · View at Scopus
  22. J. E. Nash and J. V. Sutcliffe, “River flow forecasting through conceptual models part I—a discussion of principles,” Journal of Hydrology, vol. 10, no. 3, pp. 282–290, 1970. View at Google Scholar · View at Scopus
  23. D. R. Legates and G. J. McCabe Jr., “Evaluating the use of 'goodness-of-fit' measures in hydrologic and hydroclimatic model validation,” Water Resources Research, vol. 35, no. 1, pp. 233–241, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. S. K. Chong, R. E. Green, and L. R. Ahuja, “Infiltration prediction based on estimation of Green-Ampt wetting front pressure head from measurements of soil water redistribution,” Soil Science Society of America Journal, vol. 46, no. 2, pp. 235–239, 1982. View at Google Scholar · View at Scopus