Table of Contents Author Guidelines Submit a Manuscript
International Journal of Agronomy
Volume 2012 (2012), Article ID 925408, 10 pages
Research Article

Corn Hybrid Response to Water Management Practices on Claypan Soil

1Division of Plant Sciences, University of Missouri, Novelty, MO 63460, USA
2Greenley Research Center, University of Missouri, P.O. Box 126, Novelty, MO 63460, USA

Received 19 January 2012; Revised 17 February 2012; Accepted 4 March 2012

Academic Editor: Bernd Lennartz

Copyright © 2012 Kelly A. Nelson and Randall L. Smoot. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


A study evaluated corn (Zea mays L.) hybrids (Asgrow785, DKC61-73, DKC63-42, LG2642, and Kruger2114) and water management systems (nondrained, nonirrigated (NDNI); drained, nonirrigated (DNI) with subsurface drain tiles 6.1 and 12.2 m apart; drained plus subirrigated (DSI) with tiles 6.1 and 12.2 m apart; nondrained, overhead irrigated (NDOHI)) on yields, plant population, and grain quality from 2008 to 2010. Precipitation during this study was 36 to 283 mm above the past decade. Planting date was delayed 18 d in the nondrained control in 2009, and additional delayed planting controls were included this year. Grain yields were similar in the 6.1- and 12.2 m-spaced DNI and DSI systems in 2008 and 2010, but plant population increased 74% and yields were 3.1 Mg ha−1 greater with DSI at a 6.1 m spacing compared to 12.2 m in 2009. At a 6.1 m spacing, DNI or DSI increased yield 1.1 to 6.6 Mg ha−1 (10 to over 50%) compared to NDNI or NDOHI soil. High yielding hybrids achieved similar yields with DNI, while NDNI DKC63-42 had 1.2 Mg ha−1 greater yields compared to DKC61-73. A 6.1 m spacing for DNI claypan soils is recommended for high yielding corn production.