Table of Contents Author Guidelines Submit a Manuscript
International Journal of Agronomy
Volume 2012, Article ID 980284, 17 pages
Research Article

Corn and Soybeans in a Strip Intercropping System: Crop Growth Rates, Radiation Interception, and Grain Yield Components

1Departamento de Sistemas de Producción Vegetal, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Santa Fe, CC 14, S2125ZAA, Zavalla, Argentina
2Cátedra de Cereales, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, CC 31, B1900, La Plata, Argentina

Received 17 June 2011; Accepted 16 January 2012

Academic Editor: David Clay

Copyright © 2012 Diego Verdelli et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Crop growth rates (CGR), radiation interception (IPAR), yields, and their components were determined in two crops monocultures (using one corn and two soybean genotypes) and in intercropped “strips,” during three growing seasons. Corn yield in the strips significantly increased in the three seasons (13–16%) as compared to that in the monocultures. This response was due to increased yield in corn plants of the border rows of the strips, which was highly correlated to an increased IPAR, allowing high CGR at critical crop stages. As a result, more dry matter was partitioned to grain and also an increased number of ears per plant were generated. Conversely, yields of soybeans in the strips were 2 to 11% lower than that in the monocultures, with variable significance depending on soybean cultivar and/or year. Grain number per unit area was the yield component most closely associated to yield variation in both crops. We believe that if yield components of this system are more closely identified, more appropriate genotypes will fit into strip intercropping, thus contributing to the spread of this technique and thus to the sustainability of actual massive monocultured agricultural systems.