Table of Contents Author Guidelines Submit a Manuscript
International Journal of Agronomy
Volume 2013 (2013), Article ID 618926, 9 pages
Research Article

Inheritance and Linkage Map Positions of Genes Conferring Agromorphological Traits in Lens culinaris Medik.

1Grain Legume Genetics and Physiology Research Unit, USDA-ARS, Washington State University, Pullman, WA 99164, USA
2International Center for Agricultural Research in the Dry Areas (ICARDA), New Delhi 110012, India

Received 4 March 2013; Revised 19 June 2013; Accepted 19 June 2013

Academic Editor: Song Joong Yun

Copyright © 2013 Gopesh C. Saha et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Agromorphological traits have immense importance in breeding lentils for higher yield and stability. We studied the genetics and identified map positions of some important agro-morphological traits including days to 50% flowering, plant height, seed diameter, 100 seed weight, cotyledon color, and growth habit in Lens culinaris. Earlier developed RILs for stemphylium blight resistance (ILL-5888 × ILL-6002), contrasted for those agro-morphological traits, were used in our study. Three QTLs for days to 50% flowering were detected with additive and epistatic effects. One QTL for days to 50% flowering, QLG483 (QTL at linkage group 4 at 83 cM position), accounted for an estimated 20.2% of the variation, while QLG124 × QLG1352 and QLG484 × QLG138 accounted for 15.6% and 24.2% of the variation, respectively. Epistatic effects accounted for most of the variation in plant height, but the main effect of one QTL, QLG84, accounted for 15.3%. For seed diameter, three QTLs were detected, and one QTL, QLG482, accounted for 32.6% of the variation. For 100 seed weight, five QTLs were identified with significant additive effects and four with significant interaction effects. The main effect of one QTL, QLG482, also accounted for 17.5% of the variation in seed diameter. QLG which appears to affect days to 50% flowering, seed diameter, and 100 seed weight is flanked by RAPD markers, UBC 34 and UBC1. Growth habit and cotyledon color are controlled by single genes with prostrate dominant to erect and red cotyledon dominant to yellow. The QTL information presented here will assist in the selection of breeding lines for early maturity, upright growth habit, and improved seed quality.