Table of Contents Author Guidelines Submit a Manuscript
International Journal of Analytical Chemistry
Volume 2014 (2014), Article ID 260179, 6 pages
http://dx.doi.org/10.1155/2014/260179
Research Article

Synthesis of 6-(2-Methoxynaphthyl)-2,3-dihydro-1,2,4-triazine-3-thione as a New Reagent for Spectrophotometric Determination of Copper

Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science Research Center, Tehran University of Medical Sciences, Tehran 1417614411, Iran

Received 5 September 2013; Accepted 6 December 2013; Published 4 February 2014

Academic Editor: Teizo Kitagawa

Copyright © 2014 Maliheh Barazandeh Tehrani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Q. Hatcher and K. D. Karlin, “Oxidant types in copper-dioxygen chemistry: the ligand coordination defines the Cun-O2 structure and subsequent reactivity,” Journal of Biological Inorganic Chemistry, vol. 9, no. 6, pp. 669–683, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. A. C. Rosenzweig and M. H. Sazinsky, “Structural insights into dioxygen-activating copper enzymes,” Current Opinion in Structural Biology, vol. 16, no. 6, pp. 729–735, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. Y.-M. Kuo, B. Zhou, D. Cosco, and J. Gitschier, “The copper transporter CTR1 provides an essential function in mammalian embryonic development,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 12, pp. 6836–6841, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. R. R. Crichton, Biological Inorganic Chemistry: A New Introduction to Molecular Structure and Function, Elsevier, Amsterdam, The Netherland, 2nd edition, 2012.
  5. D. Strausak, J. F. B. Mercer, H. H. Dieter, W. Stremmel, and G. Multhaup, “Copper in disorders with neurological symptoms: Alzheimer's, Menkes, and Wilson diseases,” Brain Research Bulletin, vol. 55, no. 2, pp. 175–185, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Gyawali, S. A. Ibrahim, S. A. Abu Hasfa, S. Q. Smqadri, and Y. Haik, “Antimicrobial activity of copper alone and in combination with lactic acid against Escherichia coli O157:H7 in laboratory medium and on the surface of lettuce and tomatoes,” Journal of Pathogens, vol. 2011, Article ID 650968, 9 pages, 2011. View at Publisher · View at Google Scholar
  7. I. Codiţă, D. M. Caplan, E. C. Drăgulescu et al., “Antimicrobial activity of copper and silver Nano films on nosocomial bacterial species,” Roumanian Archives of Microbiology and Immunology, vol. 69, no. 4, pp. 204–212, 2010. View at Google Scholar
  8. L. Zhu, J. Elguindi, C. Rensing, and S. Ravishankar, “Antimicrobial activity of different copper alloy surfaces against copper resistant and sensitive Salmonella enterica,” Food Microbiology, vol. 30, no. 1, pp. 303–310, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Zhu, K. Inagaki, and K. Chiba, “Determination of Fe, Cu, Ni, and Zn in seawater by ID-ICP-MS after preconcentration using a syringe-driven chelating column,” Journal of Analytical Atomic Spectrometry, vol. 24, no. 9, pp. 1179–1183, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. V. Chrastný and M. Komárek, “Copper determination using ICP-MS with hexapole collision cell,” Chemical Papers, vol. 63, no. 5, pp. 512–519, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Ghaedi, F. Ahmadi, and A. Shokrollahi, “Simultaneous preconcentration and determination of copper, nickel, cobalt and lead ions content by flame atomic absorption spectrometry,” Journal of Hazardous Materials, vol. 142, no. 1-2, pp. 272–278, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Soriano, A. D. P. Netto, and R. J. Cassella, “Determination of Cu, Fe, Mn and Zn by flame atomic absorption spectrometry in multivitamin/multimineral dosage forms or tablets after an acidic extraction,” Journal of Pharmaceutical and Biomedical Analysis, vol. 43, no. 1, pp. 304–310, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Threeprom, W. Som-Aum, and J.-M. Lin, “Determination of Pb(II), Cu(II) and Fe(III) with capillary electrophoresis using ethylenediaminetetraacetic acid as a complexing agent and vancomycin as a complex selector,” Analytical Sciences, vol. 22, no. 9, pp. 1179–1184, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Škrlíková, V. Andruch, I. S. Balogh, L. Kocúrová, L. Nagy, and Y. Bazeľ, “A novel environmentally friendly dispersive liquid-liquid micro extraction procedure for the determination of copper,” Microchemical Journal, vol. 99, pp. 40–45, 2011. View at Google Scholar
  15. D. Fu and D. Yuan, “Spectrophotometric determination of trace copper in water samples with thiomichlersketone,” Spectrochimica Acta A, vol. 66, no. 2, pp. 434–437, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Karthikeyan, P. P. Naik, and A. Nityananda Shetty, “A rapid extractive spectrophotometric determination of copper(II) in environmental samples, alloys, complexes and pharmaceutical samples using 4-N,N(dimethyl)amino]benzaldehyde thiosemicarbazone,” Environmental Monitoring and Assessment, vol. 176, no. 1–4, pp. 419–426, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. F. Shamsa and M. Barazandeh-Tehrani, “Synthesis of 6-(2-naphthyl)-2,3-dihydro-as-triazine-3-thione as a sensitive reagent for the spectrophotometric determination of Cu (II),” Daru, vol. 12, no. 2, pp. 76–80, 2004. View at Google Scholar · View at Scopus
  18. M. B. Tehrani and E. Souri, “Third derivative spectrophotometric method for simultaneous determination of copper and nickel using 6-(2-naphthyl)-2, 3-dihydro-1,2,4-triazine-3-thione,” E-Journal of Chemistry, vol. 8, no. 2, pp. 587–590, 2011. View at Google Scholar · View at Scopus
  19. M. B. Tehrani, S. F. Shamsa, S. Shams, and M. M. Farahani, “Spectrophotometric determination of copper in serum using 6-(2-naphthyl)-2,3-dihydro-1,2,4-triazine-3-thione,” Asian Journal of Chemistry, vol. 22, no. 1, pp. 21–26, 2010. View at Google Scholar · View at Scopus
  20. M. Barazandeh Tehrani, S. M. S. Mirkamali, E. Souri, and A. Foroumadi, “Derivative spectrophotometric method for simultaneous determination of nickel (II) and copper (II) using 6-(Anthracen-2-yl)-2,3-dihydro-1,2,4-triazine-3-thione,” Asian Journal of Chemistry, vol. 24, no. 10, pp. 4517–4521, 2012. View at Google Scholar
  21. O. Turkoglu and M. Soylak, “Spectrophotometric determination of copper in natural waters and pharmaceutical samples with Chloro(phenyl) glyoxime,” Journal of the Chinese Chemical Society, vol. 52, no. 3, pp. 575–579, 2005. View at Google Scholar · View at Scopus
  22. K. Hussain Reddy, N. B. L. Prasad, and T. Sreenivasulu Reddy, “Analytical properties of 1-phenyl-1,2-propanedione-2-oxime thiosemicarbazone: simultaneous spectrophotometric determination of copper(II) and nickel(II) in edible oils and seeds,” Talanta, vol. 59, no. 3, pp. 425–433, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Thipyapong and C. Suksai, “Spectrophotometric determination of copper (II) using diamine-dioxime derivative,” Bulletin of the Korean Chemical Society, vol. 24, no. 12, pp. 1767–1770, 2003. View at Google Scholar · View at Scopus
  24. M. K. Pourohit and K. K. Desai, “2-Hydroxy-4-methoxybenzophenone oxime as an analytical reagent for Copper(II),” E-Journal of Chemistry, vol. 2, no. 2, pp. 161–164, 2005. View at Publisher · View at Google Scholar
  25. C. Capello, U. Fischer, and K. Hungerbühler, “What is a green solvent? A comprehensive framework for the environmental assessment of solvents,” Green Chemistry, vol. 9, no. 9, pp. 927–934, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Alfonsi, J. Colberg, P. J. Dunn et al., “Green chemistry tools to influence a medicinal chemistry and research chemistry based organisation,” Green Chemistry, vol. 10, no. 1, pp. 31–36, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Shrivastava, B. Vipin, and R. Gupta, “Methods for the determination of limit of detection and limit of quantification of analytical methods,” Chronicles of Young Scientists, vol. 2, no. 1, pp. 21–25, 2011. View at Publisher · View at Google Scholar