Table of Contents Author Guidelines Submit a Manuscript
International Journal of Analytical Chemistry
Volume 2014, Article ID 490291, 8 pages
Research Article

Analytical Performances of Nanostructured Gold Supported on Metal Oxide Sorbents for the Determination of Gaseous Mercury

1School of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Private Bag Box X3, Wits, Johannesburg 2050, South Africa
2Laboratoire de Chimie Analytique, Bio-Inorganique et Environnement (LCABIE-IPREM), UPPA, Hélioparc Pau-Pyrénées, avenue Pdt. Pierre Angot, 64053 Pau Cedex 9, France

Received 20 August 2013; Revised 25 February 2014; Accepted 10 March 2014; Published 6 April 2014

Academic Editor: Jan Åke Jönsson

Copyright © 2014 Julien Lusilao-Makiese et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Nanostructured gold supported TiO2, ZnO, and Al2O3 materials (1% w/w Au) were tested as sorbents for gaseous mercury (Hg) trapping and preconcentration. Their analytical performances were first compared with the one of traditional gold wool trap for the quantification of Hg standards injected into the argon flow followed by thermal desorption at 600°C and CVAFS detection. Good linearity and reproducibility were obtained, especially for Au/TiO2 material (; slope: 1.39) in the volume range of 10 to 60 µL (132–778 pg Hg). This latter even showed a better performance compared to pure Au in the volume range of 10 to 100 µL (132–1329 pg Hg) when the carrier gas flow was increased from 60 to 100 mL . The method detection limit (MDL) obtained with Au/TiO2 trap (0.10 pg ) was suitable for total gaseous mercury (TGM) determination. Au/TiO2 was, therefore, used in trapping and determining TGM in collected air samples. TGM values in the samples ranged from 6 to 10 ng . Similar results were obtained with the commercial gold-coated sand trap which showed an average TGM concentration of  ng .