Table of Contents Author Guidelines Submit a Manuscript
International Journal of Analytical Chemistry
Volume 2017, Article ID 6150209, 15 pages
https://doi.org/10.1155/2017/6150209
Research Article

The Adsorption of Pb, Zn, Cu, Ni, and Cd by Modified Ligand in a Single Component Aqueous Solution: Equilibrium, Kinetic, Thermodynamic, and Desorption Studies

Department of Chemical Engineering, Vaal University of Technology, Private Mail Bag X021, Vanderbijlpark 1900, South Africa

Correspondence should be addressed to E. Igberase; moc.oohay@9002eciohcym

Received 20 January 2017; Revised 5 April 2017; Accepted 9 April 2017; Published 18 May 2017

Academic Editor: Mu. Naushad

Copyright © 2017 E. Igberase et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Ramos, A. Pedrosa, X. Teodoroa et al., “Modeling mono- and multi-component adsorption of cobalt(II), copper(II), and nickel(II) metal ions from aqueous solution onto a new carboxylated sugarcane bagasse. Part I: Batch adsorption study,” Industrial Crops and Products, vol. 74, pp. 357–371, 2015. View at Publisher · View at Google Scholar · View at Scopus
  2. L. Zhang, Y. Zeng, and Z. Cheng, “Removal of heavy metal ions using chitosan and modified chitosan: a review,” Journal of Molecular Liquids, vol. 214, pp. 175–191, 2016. View at Publisher · View at Google Scholar · View at Scopus
  3. X. Luo, Z. Zhang, P. Zhou, Y. Liu, G. Ma, and Z. Lei, “Synergic adsorption of acid blue 80 and heavy metal ions (Cu2+/Ni2+) onto activated carbon and its mechanisms,” Journal of Industrial and Engineering Chemistry, vol. 27, pp. 164–174, 2015. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Mittal, M. Naushad, G. Sharma, Z. A. Alothman, S. M. Wabaidur, and M. Alam, “Fabrication of MWCNTs/ThO2 nanocomposite and its adsorption behavior for the removal of Pb(II) metal from aqueous medium,” Desalination and Water Treatment, vol. 57, no. 46, pp. 21863–21869, 2016. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Igberase, P. Osifo, and A. Ofomaja, “The adsorption of copper (II) ions by polyaniline graft chitosan beads from aqueous solution: equilibrium, kinetic and desorption studies,” Journal of Environmental Chemical Engineering, vol. 2, no. 1, pp. 362–369, 2014. View at Publisher · View at Google Scholar · View at Scopus
  6. M. A. Barakat, “New trends in removing heavy metals from industrial wastewater,” Arabian Journal of Chemistry, vol. 4, no. 4, pp. 361–377, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. Z. Mohamed, A. Abdelkarim, K. Ziat, and S. Mohamed, “Adsorption of Cu(II) onto natural clay: Equilibrium and thermodynamic studies,” Journal of Materials and Environmental Science, vol. 7, no. 2, pp. 566–570, 2016. View at Google Scholar · View at Scopus
  8. M. Naushad, T. Ahamad, Z. A. Alothman, M. A. Shar, N. S. AlHokbany, and S. M. Alshehri, “Synthesis, characterization and application of curcumin formaldehyde resin for the removal of Cd2+ from wastewater: kinetics, isotherms and thermodynamic studies,” Journal of Industrial and Engineering Chemistry, vol. 29, pp. 78–86, 2015. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Igberase and P. Osifo, “Equilibrium, kinetic, thermodynamic and desorption studies of cadmium and lead by polyaniline grafted cross-linked chitosan beads from aqueous solution,” Journal of Industrial and Engineering Chemistry, vol. 26, pp. 340–347, 2015. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Berger, M. Reist, J. M. Mayer, O. Felt, N. A. Peppas, and R. Gurny, “Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 57, no. 1, pp. 19–34, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Maitra and V. K. Shukla, “Cross-linking in hydrogels,” American Journal of Polymer Science, vol. 4, pp. 25–31, 2014. View at Google Scholar
  12. G. Gyananath and D. K. Balhal, “Removal of lead (II) from aqueous solutions by adsorption onto chitosan beads,” Cellulose Chemistry and Technology, vol. 46, no. 1-2, pp. 121–124, 2012. View at Google Scholar · View at Scopus
  13. K. B. Payne and T. M. Abdel-Fattah, “Adsorption of divalent lead ions by zeolites and activated carbon: Effects of pH, temperature, and ionic strength,” Journal of Environmental Science and Health, vol. 39, no. 9, pp. 2275–2291, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Hena, “Removal of chromium hexavalent ion from aqueous solutions using biopolymer chitosan coated with poly 3-methyl thiophene polymer,” Journal of Hazardous Materials, vol. 181, no. 1-3, pp. 474–479, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. R. K. Mohammed, “Determination of the degree of N-acetylation for chitin and chitosan by various NMR spectroscopy techniques: a review,” Carbohydrate Polymers, vol. 79, no. 4, pp. 801–810, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Ola, “Kinetic and isotherm studies of copper (ii) removal from wastewater using various adsorbents,” Egyptian Journal of Aquatic Research, vol. 33, pp. 125–143, 2007. View at Google Scholar
  17. D. Liu, D. Sun, and Y. Li, “Removal of Cu(II) and Cd(II) from aqueous solutions by polyaniline on sawdust,” Separation Science and Technology, vol. 46, no. 2, pp. 321–329, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. A. O. Dada, A. P. Olalekan, A. M. Olatunya, and O. Dada, “Langmuir, freundlich, temkin and dubinin–radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk,” Journal of Applied Chemistry, vol. 3, no. 1, pp. 38–45, 2012. View at Publisher · View at Google Scholar
  19. B. Erdem, A. Özcan, Ö. Gök, and A. S. Özcan, “Immobilization of 2,2′-dipyridyl onto bentonite and its adsorption behavior of copper(II) ions,” Journal of Hazardous Materials, vol. 163, no. 1, pp. 418–426, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. W. S. W. Ngah and S. Fatinathan, “Adsorption characterization of Pb(II) and Cu(II) ions onto chitosan-tripolyphosphate beads: kinetic, equilibrium and thermodynamic studies,” Journal of Environmental Management, vol. 91, no. 4, pp. 958–969, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. Y.-S. Ho and A. E. Ofomaja, “Kinetics and thermodynamics of lead ion sorption on palm kernel fibre from aqueous solution,” Process Biochemistry, vol. 40, no. 11, pp. 3455–3461, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Lagergren, “Zur theorie der sogenannten adsorption geloster stoffe, Kungliga Svenska Vetenskapsakademiens,” Handlingar, vol. 24, p. 596, 1898. View at Google Scholar
  23. Y. S. Ho and G. McKay, “Sorption of dye from aqueous solution by peat,” Chemical Engineering Journal, vol. 70, no. 2, pp. 115–124, 1998. View at Publisher · View at Google Scholar · View at Scopus
  24. A. U. Itodo, F. W. Abdulrahman, L. G. Hassan, S. A. Maigandi, and U. O. Happiness, “Thermodynamic, equilibrium, kinetics and adsorption mechanism of industrial dye removal by chemically modified poultry droppings activated carbon,” Nigerian Journal of Basic and Applied Sciences, vol. 17, pp. 38–43, 2009. View at Google Scholar
  25. S. Hao, V. Antonio, P. Aprea, F. Pepe, D. Caputo, and W. Zhu, “Optimal synthesis of amino-functionalized mesoporous silicas for the adsorption of heavy metal ions,” Microporous and Mesoporous Materials, vol. 236, pp. 250–259, 2016. View at Publisher · View at Google Scholar
  26. L. Bulgariu, C. Balan, D. Bulgariu, and M. Macoveanu, “Valorisation of romanian peat for the removal of some heavy metals from aqueous media,” Desalination and Water Treatment, vol. 52, no. 31-33, pp. 5891–5899, 2014. View at Publisher · View at Google Scholar · View at Scopus
  27. X. Guo, S. Zhang, and X.-Q. Shan, “Adsorption of metal ions on lignin,” Journal of Hazardous Materials, vol. 151, no. 1, pp. 134–142, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Sun and A. Wang, “Adsorption properties and mechanism of cross-linked carboxymethyl-chitosan resin with Zn(II) as template ion,” Reactive and Functional Polymers, vol. 66, no. 8, pp. 819–826, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. A. F. Ngomsik, A. Bee, J.-M. Siaugue, V. Cabuil, and G. Cote, “Nickel adsorption by magnetic alginate microcapsules containing an extractant,” Water Research, vol. 40, no. 9, pp. 1848–1856, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. M. M. Rao, G. P. C. Rao, K. Seshaiah, N. V. Choudary, and M. C. Wang, “Activated carbon from Ceiba pentandra hulls, an agricultural waste, as an adsorbent in the removal of lead and zinc from aqueous solutions,” Waste Management, vol. 28, no. 5, pp. 849–858, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Srivastava, D. K. Mishra, and K. Behari, “Graft copolymerization of N-vinyl-2-pyrrolidone onto chitosan: Synthesis, characterization and study of physicochemical properties,” Carbohydrate Polymers, vol. 80, no. 3, pp. 790–798, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. M. O. Omorogie, J. O. Babalola, E. I. Unuabonah, W. Song, and J. R. Gong, “Efficient chromium abstraction from aqueous solution using a low-cost biosorbent: nauclea diderrichii seed biomass waste,” Journal of Saudi Chemical Society, vol. 20, no. 1, pp. 49–57, 2016. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Malamis and E. Katsou, “A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite: examination of process parameters, kinetics and isotherms,” Journal of Hazardous Materials, vol. 252-253, pp. 428–461, 2013. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Shanmugapriya, M. Hemalatha, B. Scholastica, and T. B. Augustine, “Adsorption studies of lead (II) and nickel (II) ions on chitosan-G-polyacrylonitrile,” Der Pharma Chemica, vol. 5, no. 3, pp. 141–155, 2013. View at Google Scholar · View at Scopus
  35. L. Nouri, I. Ghodbane, O. Hamdaoui, and M. Chiha, “Batch sorption dynamics and equilibrium for the removal of cadmium ions from aqueous phase using wheat bran,” Journal of Hazardous Materials, vol. 149, no. 1, pp. 115–125, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. G. Crini and P.-M. Badot, “Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature,” Progress in Polymer Science, vol. 33, no. 4, pp. 399–447, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. C. Dong, F. Zhang, Z. Pang, and G. Yang, “Efficient and selective adsorption of multi-metal ions using sulfonated cellulose as adsorbent,” Carbohydrate Polymers, vol. 151, pp. 230–236, 2016. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Çoruh and O. N. Ergun, “Ni2+ removal from aqueous solutions using conditioned clinoptilolites: Kinetic and isotherm studies,” Environmental Progress and Sustainable Energy, vol. 28, no. 1, pp. 162–172, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. E. Erdem, N. Karapinar, and R. Donat, “The removal of heavy metal cations by natural zeolites,” Journal of Colloid and Interface Science, vol. 280, no. 2, pp. 309–314, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. D. Wu, Y. Sui, S. He, X. Wang, C. Li, and H. Kong, “Removal of trivalent chromium from aqueous solution by zeolite synthesized from coal fly ash,” Journal of Hazardous Materials, vol. 155, no. 3, pp. 415–423, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. S. S. Gupta and K. G. Bhattacharyya, “Immobilization of Pb(II), Cd(II) and Ni(II) ions on kaolinite and montmorillonite surfaces from aqueous medium,” Journal of Environmental Management, vol. 87, no. 1, pp. 46–58, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Özer, D. Özer, and A. Özer, “The adsorption of copper(II) ions on to dehydrated wheat bran (DWB): determination of the equilibrium and thermodynamic parameters,” Process Biochemistry, vol. 39, no. 12, pp. 2183–2191, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. D. Park, Y. S. Yun, and J. M. Park, “The past, present, and future trends of biosorption,” Biotechnology and Bioprocess Engineering, vol. 15, no. 1, pp. 86–102, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. J. R. Evans, W. G. Davids, J. D. MacRae, and A. Amirbahman, “Kinetics of cadmium uptake by chitosan-based crab shells,” Water Research, vol. 36, no. 13, pp. 3219–3226, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. E. Katsou, S. Malamis, and K. Haralambous, “Examination of zinc uptake in a combined system using sludge, minerals and ultrafiltration membranes,” Journal of Hazardous Materials, vol. 182, no. 1-3, pp. 27–38, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. Z. Zawani, C. A. Luqman, and S. Y. C. Thomas, “Equilibrium, kinetics and thermodynamic studies: adsorption of remazol black 5 on the palm kernel shell activated carbon (PKS-AC),” European Journal of Scientific Research, vol. 37, pp. 63–71, 2009. View at Google Scholar
  47. V. K. Mourya, N. N. Inamdar, and A. Tiwari, “Carboxymethyl chitosan and its applications,” Advanced Materials Letters, vol. 1, pp. 11–33, 2010. View at Google Scholar
  48. E. Guibal, “Interactions of metal ions with chitosan-based sorbents: a review,” Separation and Purification Technology, vol. 38, no. 1, pp. 43–74, 2004. View at Publisher · View at Google Scholar · View at Scopus