International Journal of Analytical Chemistry

International Journal of Analytical Chemistry / 2020 / Article

Research Article | Open Access

Volume 2020 |Article ID 6290617 | https://doi.org/10.1155/2020/6290617

Desta Berhe Sbhatu, Goitom Gebreyohannes Berhe, Abadi Gebreyesus Hndeya, Haftom Baraki Abraha, Asmael Abdu, Haftay Abadi Gebru, Molla Gereme Taye, Afework Mulugeta, Micheale Yifter Weldemichael, Hailekiros Tadesse Tekle, Haileselassie Gebremeskel Kidanemariam, "Formulation and Physicochemical Evaluation of Lab-Based Aloe adigratana Reynolds Shampoos", International Journal of Analytical Chemistry, vol. 2020, Article ID 6290617, 7 pages, 2020. https://doi.org/10.1155/2020/6290617

Formulation and Physicochemical Evaluation of Lab-Based Aloe adigratana Reynolds Shampoos

Academic Editor: Barbara Bojko
Received07 Jan 2020
Accepted19 Mar 2020
Published04 Apr 2020

Abstract

Aloe L. species (Aloaceae) are ethnobotanically very valuable plants in many communities and civilizations. Nonetheless, very few species are extensively studied to explore their applications in the pharmaceutical and medical, cosmetic and personal care, food and beverage, and detergent industries. This study evaluated the characteristics and quality of lab-based shampoos formulated from the gel of Aloe adigratana Reynolds. Five shampoo formulations, 20 mL each, were prepared from A. adigratana gel in combination with one to two drops of coconut oil, jojoba oil, olive oil, pure glycerin oil, lemon juice, and vitamin E. Gel mass is prepared from mature, healthy leaves collected from the natural stand. The phytochemistry of the gel of the plant was also studied using phytochemical screening, proximate composition, and GC-MS analysis studies. Shampoo formulations with higher proportion (40 to 50% v/v) of A. adigratana gel were found to have comparable characteristics and qualities with a marketed shampoo. They fall within the range of acceptable quality parameters of commercial shampoos. The phytochemical studies of A. adigratana gel showed that the plant is the source of highly valued compounds for the preparation of shampoos. The gel was found to be rich in saponins as well as dodecanoic acid, hexadecanoic acid, and phytol. Future works should focus in the development of refined protocol towards formulating A. adigratana-based shampoos.

1. Introduction

Aloe L. (Aloaceae) species are regarded as lilies of the desert, plants of immortality, and medicine plants [1]. They are native to Africa, the Mediterranean region of Southern Europe, South and Central America, Rio Grande Valley of South Texas, Florida, Southern California, Mexico, Pacific Rim countries, India, Caribbean, Arabian Peninsula, and Australia [2, 3]. Ethiopia and Eritrea are home to 50 known and described species [47].

Nearly, all species of Aloe exhibit high-degree endemism and many of them are restricted to a very small area. Over three-quarter of the Ethiopian aloes are endemic and restricted to few floristic regions and limited habitats [8]. Nine of the 50 Ethiopian and Eritrean aloes grow in the Tigray floristic region, namely, A. adigratana Reynolds, A. camperi Schweinfurth, A. elegans Todaro, A. macrocarpa Todaro, A. monticola Reynolds, A. percrassa Todaro, A. sinana Reynolds, A. steudneri Schweinfurth, and A. trichosantha subsp. trichosantha. The most abundantly growing aloes in the Tigray floristic region are A. adigratana and A. elegans where the former belongs to the Tigray floristic region only. A. adigratana grows in rocky places, mostly sandstone or basement complex, between 2,000 and 2,700 masl. Its main flowering period is from January to April. It has one (if erect) to two (if decumbent) meters long stem [5].

Aloes are all-purpose plants recorded in the annals of history of early civilizations. They are used for producing cosmetic and personal care, detergent and toiletry, medicinal and pharmaceutical, and food and beverage products. They are grown for ornamental purposes and large-scale horticulture [913]. Herbal formulations of shampoos, personal care, and toiletry products have long been considered as better alternatives to synthetic ones [1421]. Aloes are important sources of herbal inputs in producing cosmetic, personal care, and toiletry products. However, only A. barbadensis Miller (A. vera L.) is extensively used in producing lotions, soaps, shampoos, creams, and facial cleansers, see, e.g., [9, 22]. This study aims at describing the physicochemical characteristics of lab-based A. adigratana gel shampoo formulations. The plant grows widely in the Tigray floristic region of the Flora of Ethiopia and Eritrea across various ecological conditions. It is planted as fence of farm plots, backyards, churchyards, and footpaths. Unfortunately, the plant is put in the IUCN (International Union for Conservation of Nature) Red List because is it endangered. Thus, studies on the chemistry of this aloe and its shampoo formulations are some of the initiatives aiming at exploring its potential while ensuring its conservation and sustainable use.

2. Materials and Methods

2.1. Collection and Preparation of Plant Specimens

Healthy and mature leaves of A. adigratana were collected from the wild stand in Al’asa (30 km on the Mekelle-Abbiyi Addi highway; lat./long.: 13.681/39.264; alt.: 2,436 m) on 30 March 2019. Collection of biological materials by natives (Ethiopians) for research and development is granted by Article 15, Clause 1 of the Access to Genetic Resources and Community Knowledge and Community Rights Proclamation of Ethiopia (No. 482/2006). Specimens of the plant were identified by the National Herbarium (ETH), the Department of Biology, Addis Ababa University (Ethiopia). The leaves were washed with tap water to remove dirt and soil. The outer green skin (i.e., the leaf) and the inner gelatinous mass (i.e., the gel) were separated by peeling the skin off with scalpel. The gel mass was dried in shade at room temperature for 18 days. The dried gel mass was then pulverized into powder in an electrical grinder and stored in sealed container until used for the phytochemical study.

2.2. Gross Phytochemistry of Gel Extracts

The A. adigratana gel powder was extracted by 100% methanol using the continuous hot percolation method in a Soxhlet apparatus for 18 hours. The extract was concentrated in a rotary evaporator to yield a brown liquid. The extract was kept at 4°C in a deep freezer. Then, samples of the extracts were subjected to preliminary phytochemical screening using standard tests for alkaloids (Wagner test), anthraquinones (Borntrager’s test), flavonoids (lead acetate test), saponins (froth test), tannins (ferric chloride test), and terpenoids (Salkowski test) [2327]. Besides, some gel extract was subjected to esterification and gas chromatography mass spectroscopy (GC-MS) at JIJE LOBOGLASS Pvt. Ltd. Co., Addis Ababa, Ethiopia. Instrument control parameters of the GC-MS are given in Annex 1.0.

2.3. Formulation of A. adigratana Gel Shampoos

A. adigratana shampoos were prepared from gel mass by mixing it with six ingredients, namely, coconut oil, jojoba oil, lemon juice, olive oil, pure glycerin oil, and vitamin E (Table 1). Five shampoo formulations were prepared by mixing the ingredients at varying concentrations (amounts) (Table 2) and homogenizing the contents by a mechanical stirrer [28, 29]. The volumes of all the formulations were fixed at 20 mL by adding sterile distilled water.


Generic nameBiological applicationsManufacturer

A. adigratana gelRepairs, strengthens, hydrates, softens hair; makes hair look and feel healthier; heals wound; acts as cosmeticsLab-based formulation
Coconut oilPrevents protein loss in hair; moisturizes skin; acts as a natural sunscreenC.B.C., Malaysia
Jojoba oilMoisturizes and gives hair shining lookORS, USA
Lemon juiceActs as natural antioxidant, chelating, and antidandruff agent; maintains the pH of the acidic formulationLab-based extract
Olive oilMoisturizes hair; reduces scalp irritation and dandruffSalamati, Spain
Pure glycerin oilHydrates skin; boosts cell maturation; removes dandruffLFRESSH-eurogulf, UAE
Vitamin ESupports scalp; gives hair strong base to grow; reduces oxidative stress; preserves protective lipid layerFruit of the earth, USA


IngredientsUoMFormulations
F1F2F3F4F5

A. adigratana gelmL4681010
Coconut oilDrops11112
Olive oilDrops12121
Jojoba oilDrops11111
Glycerin oilDrops11111
Vitamin EDrops11111
Lemon juiceDrops11111

Proportion of gel(%), v/v2030405050

UoM (unit of measurement).
2.4. Evaluation of the Characteristics of the Shampoos

The five shampoo formulations were physically evaluated by inspecting and measuring their color, clarity, odor, consistency, spreadability, and pH at 25°C. Likewise, the qualities of the formulations were evaluated by analyzing their solid contents, surface tension, dirt dispersion, rheology (viscosity) (Model DV-l Plus, LV, USA), foaming stability, wetting time, and conditioning performance based on the procedures established by many researchers, e.g., [15, 23, 24, 28, 29].

3. Results and Discussion

3.1. Gross Phytochemistry of A. adigratana Gel

A. adigratana, like all aloes, can be the source of many phytochemical constituents applicable in preparing cosmetic, pharmaceutical, and many other products. Preliminary phytochemical screening of methanol gel extracts using standard tests showed the presence of anthraquinones, flavonoids, saponins, and tannins and the absence of alkaloids and terpenoids (Table 3). Brhane et al. [30] used multiple extraction solvents and reported the presence of alkaloids, flavonoids, tannins, saponins, polyphenols, and terpenoids with in vitro antioxidant properties. Leaf latex of the plant is also reported to be the source of two anthrones with anti-inflammatory activities [31]. Besides, proximate analysis exhibited that the moisture and ash content, crude fat, total protein, and carbohydrate of the plant’s gel were 92.19 ± 0.03%, 3.51 ± 0.01%, 0.24 ± 0.04%, 1.64 ± 0.09%, and 2.61 ± 0.07%, respectively [32]. In fact, there are many plants species that produce useful chemical constituents for hair care such as vitamins, amino acids, sugars, glycosides, phytohormones, bioflavonoids, fruit acids, and essential oils, thus commonly used in the formulation of shampoos [16].


CompositionTestsInspectionResultsReference

AlkaloidsWagner testBrownish-red precipitate[26]
AnthraquinonesBorntrager’s testPink, red+[24]
FlavonoidsLead acetate testYellow precipitate+[25]
SaponinsFroth testFoam+[23]
TanninsFerric chloride testDark-green+[27]
TerpenoidsSalkowski testReddish-brown[23]

“ + ” sign indicates the presence and “ – ” sign indicates absence of the chemical constituents.

GC-MS analysis of the gel extract revealed that it has 13 compounds (Table 4). Many of the compounds are used in making beauty and personal care products. Decanoic (capric) acid (2), dodecanoic (lauric) acid (3), hexadecanoic (palmitic) acid (8), n-hexadecanoic acid (9), (Z, Z)-9, 12-octadecadienoic (linoleic) acid (10), and phytol (13) are used in formulating personal care products including soaps and detergents. Decanoic (capric) acid (2), tetradecanoic (myristic) acid (7), hexadecanoic (palmitic) acid (8), (Z, Z)-9, 12-octadecadienoic (linoleic) acid (10), and phytol (13) are employed in producing cosmetics and beauty products. Octadecanoic (stearic) acid (12) and phytol (13) are also used in producing shampoos and shaving creams. Furthermore, whereas compound 10 is an important source of surfactants, compound 12 is used in saponification [33].


SNNameFormula (DB)AreatR% area

1Naphthalene, 1-methyl-C11H101,232,03720.702.41
2Decanoic acid, methyl esterC11H22O2305,68521.370.60
3Dodecanoic acid, methyl esterC13H26O21,655,24626.543.24
4aR-TurmeroneC15H20O892,56429.901.75
5TurmeroneC15H22O553,20130.031.08
6CurloneC15H22O803,20330.781.57
7Tetradecanoic acid, methyl esterC15H30O24,382,71531.168.59
8Hexadecanoic acid, methyl esterC17H34O210,391,27236.5420.36
9n-Hexadecanoic acidC16H32O26.074,84437.9411.90
10(Z, Z)-9, 12-Octadecadienoic acid, methyl esterC19H34O21,310,90143.752.57
11(E)-9-Octadecadienoic acid, methyl ester,C19H36O27,144,58944.0814.00
12Octadecanoic acid, methyl esterC19H38O22,831,47145.125.55
13PhytolC20H40O13,466,48044.4926.38

tR : retention time.
3.2. Evaluation of A. adigratana Gel Shampoos
3.2.1. Sensory Assessment

Good shampoos have attractive appearance to the sensory observer like the case with all cosmetic products. As indicated in Section 2, A. adigratana shampoos were formulated by mixing gel masses of the plant with some amounts of synthetic and natural ingredients (Tables 1 and 2). The formulations were maintained at pH of 6 ± 0.4 in compliance to skin health and safety regulations. Then, they were evaluated by comparing each of them against one commercial shampoo through sensory observation and simple measurements, namely, color, clarity, odor, consistency, spreadability, pH, and temperature. The formulations were transparent and light-green with good odor. They demonstrated no significant difference from the commercial shampoo in terms of odor, transparency, and foaming characteristics except color (Table 5). Since no coloring agent was added, the formulations were white. Varying the proportion of A. adigratana gel did not lead to change in color, turbidity, and characteristic odor.


FormulationsColorClarityOdorConsistencySpreadabilitypHTemp. (°C)

F1 (4 mL)WhiteTurbidCharacteristicThinGood6.425
F2 (6 mL)WhiteTurbidCharacteristicThinBest6.425
F3 (8 mL)WhiteTurbidCharacteristicSlightly thickBest6.525
F4 (10 mL)WhiteTurbidCharacteristicSlightly thickBest6.625
F5 (10 mL)WhiteTurbidCharacteristicSlightly thickBest6.825
CommercialGreenTurbidCharacteristicSlightly thickBest6.725

Consistencies of the formulations changed from thin to slightly thick with doubling the proportion of the gel from 4–6 mL to 8–10 mL. The spreadability was found to be the best at 6 to 10 mL of gel. Increasing the proportion of the gel led to a slight increase in pH from 6.4 (for 2 and 3 mL) to 6.8 (for 5 mL) at 25°C. Their pH values fall within the pH range of many commercial shampoos that often set from 6.0 to 7.0 at 25°C [28, 29, 34]. Most commercial shampoos are formulated as either neutral or slightly alkaline to minimize hair damage, enhance hair quality, minimize eye irritation, and maintain the ecological balance of the scalp [15, 28, 29, 35]. With the exception of color, formulations F3 to F5 have very similar physical features to the commercial shampoo used for this study and other commercial shampoos tested elsewhere [28].

3.2.2. Quality Characteristics

(1) Solid Content. The qualities of the formulated shampoos were evaluated using some physicochemical parameters, namely, solid content, foam stability, dirt dispersion, surface tension, wetting time, and conditioning performance (Table 6). Solid content is one of the physical parameters used in establishing the quality of shampoos. Lower solid content makes shampoos watery and drain off hair quickly, while higher solid content makes them difficult to work with and rinse off the hair. The solid contents of our formulations ranged from 23 to 28%. They were easy to apply to the hair and rinse off. Solid content of 20 to 30% is considered as the preferred attribute of commercial shampoos. Many researchers were able to formulate herbal shampoos with solid content falling within the acceptable range [28, 3638].


FormulationSolid content (%)Foam stabilityDirt dispersionSurface tensionWetting time testConditioning performanceTemp. (°C)

F1 (4 mL)23GoodNot detected38142Good25
F2 (6 mL)24GoodNot detected37150Good25
F3 (8 mL)26Very goodNot detected36152Good25
F4 (10 mL)28Very goodNot detected34153Good25
F5 (10 mL)25Very goodNot detected33157Good25
Commercial26Very goodNot detected32185Good25

(2) Foam Ability and Stability. Volume and stability of foams are also principal parameters in assessing the quality and consumer acceptance of shampoos [39]. Shampoos with big (as expressed in terms of volume) and stable foams (as expressed in the length of time they maintain their volumes) are regarded as the most preferred. Good shampoos produce big volume of stable foams after shaking. A. adigratana shampoos with 8 to 10 mL of gel produced foam volumes comparable to that of commercial A. vera shampoo used in the study. The foams of all formulations were compact, uniform, and stable like that of the commercial one. They maintained the same volume for five minutes. One study by Al Badi and Khan [28] with commercial dove shampoo and formulated herbal shampoo reported similar results.

(3) Dirt Dispersion. Dirt dispersion is another key parameter in evaluating the cleansing action of shampoos, whereas high-quality shampoos concentrate the dirt in the water, poor-quality ones concentrate the dirt in their foams. Any dirt or stain that concentrates in the foam is difficult to rinse away and can be redeposited on the hair. Shampoos that concentrate the dirt or stain in the water have good cleaning ability [28, 29, 40]. All our formulations yielded clean foams and water concentrated with dirt. No dirt was observed in the foams of all formulations. Similar findings were reported with herbal shampoos of plants [36].

(4) Surface Tension. The present study resulted in shampoo formulations with measures of surface tension ranging from 33 (for formulation with 10 mL gel) to 38 dynes/cm (for formulation with 4 mL gel). Preferred shampoos are those that reduce the surface tension of pure water from 72 dynes/cm to less than 40 dynes/cm at 25°C [41]. Many other researchers were able to formulate herbal shampoos with surface tension between 30 and 40 dynes/cm, e.g., [36, 38]. The effectiveness of shampoos is affected by the amount of surfactants or any other agents that reduce surface tension of water. Therefore, shampoos that reduce the surface tension of water have good detergency [42]. Apparently, the surface tensions of A. adigratana shampoo formulations fall below 40 dynes/cm at 25°C. With 8 to 10 mL of gel, our formulations were found to have comparable surface tension with the commercial shampoo used in this study (Table 6) and other shampoos studied elsewhere [28].

(5) Wetting Ability. Wetting abilities of shampoos depend on the concentration of their surfactants. Higher concentrations of surfactants lead to better wetting ability. Canvas disc method is a quick, efficient, and reliable test in evaluating the wetting abilities of shampoos as a function of wetting time [28, 29]. The most preferred shampoos are those that have shorter wetting time. The wetting time of A. adigratana shampoo formulations was compared against that of commercial A. vera shampoo. Our formulations yielded lower wetting time (142 to 157 sec.) compared to that of the commercial one (185 sec.). Shampoo formulations with shorter wetting time have higher concentrations of detergents [15, 28, 29].

(6) Conditioning Performance. The conditioning performances of shampoos depend on their chemistries. Shampoos are enriched with conditioning polymers that deposit, adhere, or adsorb onto the proteins of hairs. The polymers improve hair manageability, reduce static, and make hairs soft and smooth [15, 28, 29]. The conditioning effect of the shampoos was studied by washing a mass of cut hair with the formulations and making physical observations. All our shampoo formulations demonstrated good conditioning performance. The mass of hair was glowing, soft, silky, and manageable.

(7) Viscosity. Viscosity of a shampoo is the reflection of the amount of its solid content. Viscosity plays a key role in defining many attributes of shampoos such as their spreadability upon application and consistency in their package [37]. The viscosities of our shampoo formulations were determined using Brookfield Viscometer Spindle No. 2. The viscosity values of the shampoos ranged from 22.19 (4 mL gel) to 26.86 poise (10 mL gel) (Table 7). Shampoo formulations with higher proportions of A. adigratana gel showed higher viscosities. Higher viscosity makes shampoos thicker with improved consistency. These characteristics are attributed to the higher proportion of the gel [28]. Our formulations had 95.73 to 95.86% of moisture. They fall within an acceptable range [28, 29].


FormulationsViscosity (poise)Speed (rpm)%FSRShear stressStress rateTemp (°C)

F1 (4 mL)22.196069.1718,672.23899.9925
F2 (6 mL)24.096068.70186,112.11899.9925
F3 (8 mL)24.116067.19165,112.17899.9925
F4 (10 mL)26.176066.17168.88899.9925
F5 (10 mL)26.866069.12169.82899.9925

4. Concluding Remarks

Ethiopian aloes have been vital components of ethnomedicine. Studies on phytochemical constituents and medicinal properties of the aloes showed that they are good sources of bioactive compounds [4348]. Few studies explored the phytochemical properties of A. adigratana [3032]. Our phytochemical screening using the Froth test was positive for saponins—the principal class of phytochemicals with natural surfactants. Moreover, GC-MS analysis of the methanol gel extracts showed that the plant is the source of high amount of many phytochemicals used in the production of cosmetics and personal care products (e.g., dodecanoic acid, hexadecanoic acid, and phytol). The lab-based shampoo formulations of gel extracts prepared and evaluated in the present study exhibited desirable features like the marketed shampoo used for comparison. Sensory observation and physiochemical tests also revealed that the formulations have required qualities. Further studies are recommended to elucidate the complete phytochemical profile of the plant and develop a more refined protocol of shampoo making.

5. Annex 1.0

5.1. Instrument Control Parameters of GC-MS

D:\MassHunter\GCMS\1\methods\Fatty Acid_A. Adigratana_DB5MS 10.M Wed Jul 17 11 : 39 : 33 2019; control information: sample inlet, GC; injection source, GC ALS; injection location, front; and mass spectrometer, enabled. GC : oven temperature; set point on, (initial) 60°C; hold time, 0 min; and postrun, 50°C. Program: #1 rate 3°C/min; #1 value 110°C; #1 hold time 0 min; #2 rate 10°C/min; #2 value 140°C; #2 hold time 1 min; #3 rate 5°C/min; #3 value 195°C; #3 hold time 10 min; #4 rate 5°C/min; #4 value 225°C; #4 hold time 6 min; #5 rate 20°C/min; #5 value 250°C; and #5 hold time 4 min.

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Conflicts of Interest

The authors declare no conflicts of interest.

Acknowledgments

The authors are highly indebted to acknowledge Mekelle University for funding this study through the grant number (CRPO/MIT/LARGE/001/09).

References

  1. D. M. Hansen, J. M. Olesen, T. Mione, S. D. Johnson, and C. B. Müller, “Coloured nectar: distribution, ecology, and evolution of an enigmatic floral trait,” Biological Reviews, vol. 82, no. 1, pp. 83–111, 2007. View at: Publisher Site | Google Scholar
  2. N. Dwivedi, A. Indiradevi, K. Asha, N. Asokan, and A. Suma, “A protocol for micro-propagation of Aloe vera L. (Indian Aloe)–a miracle plant,” Research in Biotech, vol. 5, pp. 1–5, 2014. View at: Google Scholar
  3. IASC (International Aloe Science Council), “Aloe vera: a long, illustrious history dating from biblical times,” The International Aloe Science Council, Silver Spring, MA, USA, 2002. View at: Google Scholar
  4. S. Demissew, I. Friis, T. Awas et al., “Four new species of Aloe (Aloaceae) from Ethiopia, with notes on the ethics of describing new taxa from foreign countries,” Kew Bulletin, vol. 66, no. 1, pp. 111–121, 2011. View at: Publisher Site | Google Scholar
  5. S. Demissew and I. Nordal, Lilies and Aloes of Ethiopia and Eritrea, Shama Books, Addis Ababa, Ethiopia, 2nd edition, 2010.
  6. L. E. Newton, “Aloes in habitat,” in Aloes: The Genus Aloe, T. Reynolds, Ed., pp. 1–14, CRC Press, Boca Raton, FL, USA, 2004. View at: Google Scholar
  7. G. F. Smith and E. M. A. Steyn, “Taxonomy of aloaceae,” in Aloes: The Genus Aloe, T. Reynolds, Ed., pp. 15–30, CRC Press, Boca Raton, FL, USA, 2004. View at: Google Scholar
  8. S. Demissew and M. G. Gilbert, “A new species of aloe from southwest Ethiopia,” Kew Bulletin, vol. 55, no. 3, pp. 683–686, 2000. View at: Publisher Site | Google Scholar
  9. P. K. Mukherjee, N. K. Nema, N. Maity, K. Mukherjee, and R. K. Harwansh, “Phytochemical and therapeutic profile of Aloe vera,” Journal of Natural Remedies, vol. 14, no. 1, pp. 1–26, 2014. View at: Google Scholar
  10. J. Adelberg and J. Naylor-Adelberg, “Effects of cytokinin on multiplication and rooting of Aloe barbadensis during micropropagation on agar and liquid media,” Journal of Medicinally Active Plants, vol. 1, pp. 1–26, 2012. View at: Google Scholar
  11. A. K. Bhandari, J. S. Negi, V. K. Bisht, and M. K. Bharti, “In vitro propagation of Aloe vera–a plant with medicinal properties,” Nature and Science, vol. 8, pp. 174–176, 2010. View at: Google Scholar
  12. M. S. Moghaddasi, S. K. Verma et al., “Aloe vera their chemicals composition and applications: a review,” International Journal Of Biological and Medical Research, vol. 2, no. 1, pp. 466–471, 2011. View at: Google Scholar
  13. S. Carter, “Aloaceae,” in Flora Zambesiaca, G. Pope, Ed., vol. 12, pp. 48–98, Kew, London, UK, 2001. View at: Google Scholar
  14. A. Potluri, S. S. Asma, N. Rallapally, S. Durrivel, and G. A. Harish, “Review on herbs used in anti-dandruff shampoo and its evaluation parameters,” Indo American Journal of Pharmaceutical Research, vol. 3, pp. 3266–2378, 2013. View at: Google Scholar
  15. P. R. Shinde, A. U. Tatiya, and S. J. Surana, “Formulation, development and evaluation of herbal antidandruff shampoo,” International Journal of Research in Cosmetic Science, vol. 3, no. 2, pp. 25–33, 2013. View at: Google Scholar
  16. P. Arora, A. Nanda, and M. Karan, “Shampoos based on synthetic ingredients vis-a-vis shampoos based on herbal ingredients: a review,” International Journal of Pharmaceutical Sciences Review and Research, vol. 7, pp. 41–46, 2011. View at: Google Scholar
  17. A. Pooja, N. Arun, and K. Maninder, “Shampoos based on synthetic ingredients vis-a-vis shampoos based on herbal ingredients: a Review,” International Journal of Pharmaceutical Sciences Review and Research, vol. 7, no. 1, pp. 41–46, 2011. View at: Google Scholar
  18. E. Christaki and P. Florou-Paneri, “Aloe vera: a plant for many uses,” Journal of Food, Agriculture and Environment, vol. 8, no. 2, pp. 245–249, 2010. View at: Google Scholar
  19. P. Shivanand, M. Nilam, and D. Viral, “Herbs play an important role in the field of cosmetics,” International Journal of Pharmaceutical Technology Research, vol. 2, pp. 632–639, 2010. View at: Google Scholar
  20. N. Aghel, B. Moghimipour, and R. A. Dana, “Formulation of a herbal shampoo using total saponins of Acanthophyllum squarrosum,” Iranian Journal of Pharmaceutical Research, vol. 6, pp. 167–172, 2007. View at: Google Scholar
  21. A. R. Mainkar and C. I. Jolly, “Formulation of natural shampoos P,” International Journal of Cosmetic Science, vol. 23, no. 1, pp. 59–62, 2001. View at: Publisher Site | Google Scholar
  22. Z. K. Shinwari and M. Qaiser, “Efforts on conservation and sustainable use of medicinal plants of Pakistan,” Pakistani Journal of Botany, vol. 43, pp. 5–10, 2011. View at: Google Scholar
  23. A. Abebayehu, F. Mammo, and B. Kibret, “Isolation and characterization of terpene from leaves of Croton macrostachyus (Bissana),” Journal of Medicinal Plants Research, vol. 10, no. 19, pp. 256–269, 2016. View at: Google Scholar
  24. T. Kebede, F. Kibret, M. Fikre, and E. Milkyas, “Phytochemical screening and characterization of olean-18-ene type triterpeniod from the roots of,” Science, Technology and Arts Research Journal, vol. 4, no. 1, pp. 91–94, 2015. View at: Publisher Site | Google Scholar
  25. S. Bhandary, S. Kumari, V. Bhat, S. Sherly, and M. P. Bekal, “Preliminary phytochemical screening of various extracts of Punica granatum peel, whole fruit and seeds,” Journal of Health Sciences, vol. 2, no. 4, pp. 35–38, 2012. View at: Google Scholar
  26. J. Parekh, N. Karathia, and S. Chanda, “Evaluation of antibacterial activity and phytochemical analysis of Bauhinia variegata L. bark,” African Journal of Biomedical Research, vol. 9, pp. 53–56, 2006. View at: Google Scholar
  27. A. Sofowora, Medicinal Plants and Traditional Medicine in Africa, John Wiley & Sons, Hoboken, NJ, USA, 1982.
  28. K. Al Badi and S. A. Khan, “Formulation, evaluation and comparison of the herbal shampoo with the commercial shampoos,” Beni-Suef University Journal of Basic and Applied Sciences, vol. 3, no. 4, pp. 301–305, 2014. View at: Publisher Site | Google Scholar
  29. Y. Pounikar, P. Jain, N. Khurana, L. K. Omray, S. Patil, and A. Gajbhiye, “Formulation and characterization of Aloe vera cosmetic herbal hydrogel,” International Journal of Pharmacy and Pharmaceutical Sciences, vol. 4, no. 4, pp. 85-86, 2012. View at: Google Scholar
  30. G. H. Brhane, V. K. Gopalakrishnan, Z. Hagos, M. Hiruy, K. Devaki, and K. K. Chaithanya, “Phytochemical screening and in vitro antioxidant activities of ethanolic gel extract of Aloe adigratana Reynolds,” Journal of Pharmacy Research, vol. 12, no. 1, pp. 13–19, 2018. View at: Google Scholar
  31. M. Tsegay, Y. Tewabe, D. Bisrat, and K. Asres, “In vivo anti-inflammatory activity of two anthrones from the leaves of Aloe adigratana Reynolds and Aloe elegans Todaro,” Ethiopian Pharmaceutical Journal, vol. 34, no. 1, pp. 1–8, 2018. View at: Google Scholar
  32. A. Gebremariam, “Extraction, isolation and characterization of flavonoids from leaves and gels of Aloe Adigratana Reynolds,” Mekelle University, Mekelle, Ethiopia, 2018, M.Sc. thesis. View at: Google Scholar
  33. NIH (U.S. National Library of Medicine), “National center for biotechnology information, national institute of health),” NIH (U.S. National Library of Medicine), Rockville, MA, USA, 2020, https://pubchem.ncbi.nlm.nih.gov.
  34. J. Tarun, J. Susan, J. V. Susan, and S. Criton, “Evaluation of pH of bathing soaps and shampoos for skin and hair care,” Indian Journal Dermatology, vol. 59, no. 5, pp. 442–444, 2014. View at: Publisher Site | Google Scholar
  35. R. Baran and H. I. Maibah, Textbook of Dermatology, CRC Press, Boca Raton, FL, USA, 2nd edition, 1998.
  36. R. O. Bakr, R. I. Amer, M. A. A. Fayed, and T. I. M. Ragab, “A completely polyherbal conditioning and antioxidant shampoos: a phytochemical study pharmaceutical evaluation,” Journal of Pharmacy and Bioallied Sciences, vol. 11, no. 2, pp. 105–115, 2019. View at: Publisher Site | Google Scholar
  37. B. T. AlQuadeib, E. K. D. Eltahir, R. A. Banafa, and L. A. Al-Hadhairi, “Pharmaceutical evaluation of different shampoo brands in local Saudi market,” Saudi Pharmaceutical Journal, vol. 26, pp. 98–106, 2018. View at: Publisher Site | Google Scholar
  38. A. Vijayalakshmi, S. Sangeetha, and N. Ranjith, “Formulation and evaluation of herbal shampoo,” Asian Journal of Pharmaceutical and Clinical Research, vol. 11, no. 4, pp. 121–124, 2018. View at: Publisher Site | Google Scholar
  39. R. Deeksha, P. Malviya, and S. Kumar, “Evaluation of marketed shampoo (synthetic and natural) for their hair cleansing, dirt dispersion, wetting time, soild content and foaming capacity properties,” Global Journal of Pharmacology, vol. 8, pp. 490–493, 2014. View at: Publisher Site | Google Scholar
  40. A. H. Saad and R. B. Kadhim, “Formulation and evaluation of herbal shampoo from Ziziphus spina-christi leaves extract,” International Journal of Research in Ayurveda & Pharmacy, vol. 2, no. 6, pp. 1802–1806, 2011. View at: Google Scholar
  41. S. Ireland, K. Carlino, L. Gould et al., “Shampoo after craniotomy: a pilot study,” Canadian Journal of Neurosci. Nurs., vol. 29, no. 1, pp. 14–19, 2007. View at: Google Scholar
  42. A. Kumar and R. R. Mali, “Evaluation of prepared shampoo formulations and compare formulated shampoo with marketed shampoos,” International Journal of Pharmaceutical Sciences Review and Research, vol. 3, no. 1, pp. 120–126, 2010. View at: Google Scholar
  43. B. Girma, D. Bisrat, and K. Asres, “Antimalarial evaluation of the leaf latex of Aloe citrina and its major constituents,” Ancient Science of Life, vol. 34, no. 3, pp. 43–47, 2015. View at: Google Scholar
  44. G. Gebremedhin, D. Bisrat, and K. Asres, “Isolation, characterization, and in vivo antimicrobial evaluation of anthrones from leaf latex of Aloe percrassa Tod,” Journal of Natural Remedies, vol. 14, no. 2, pp. 1–7, 2014. View at: Google Scholar
  45. G. Minale, D. Bisrat, K. Asres, and A. Mazumder, “In vitro antimicrobial activities of anthrones from the leaf latex of Aloe sinana Reynolds,” International Journal of Green Pharmacy, vol. 8, no. 1, pp. 7–12, 2014. View at: Google Scholar
  46. G. Asamenew, D. Bisrat, A. Mazumder, and K. Asres, “In vitro antimicrobial and antioxidant activities of anthrone and chromone from the latex of A. harlana Reynolds,” Phytotherapy Research, vol. 25, pp. 1756–1760, 2011. View at: Publisher Site | Google Scholar
  47. B. Paulos, D. Bisrat, T. Gedif, and K. Asres, “Antimalarial and antioxidant activities of the leaf exudates and a naphthalene derivative from Aloe otallensis Baker,” Ethiopian Pharmaceutical Journal, vol. 29, pp. 100–107, 2011. View at: Google Scholar
  48. T. Deressa, Y. Mekonnen, and A. Animut, “In vivo antimalarial activities of Clerodendrom myricoides, Dodonaea angustifolia and Aloe debrana against Plasmodium berghei,” Ethiopian Journal of Health and Development, vol. 24, pp. 25–29, 2010. View at: Publisher Site | Google Scholar

Copyright © 2020 Desta Berhe Sbhatu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

 PDF Download Citation Citation
 Download other formatsMore
 Order printed copiesOrder
Views564
Downloads325
Citations

Related articles

We are committed to sharing findings related to COVID-19 as quickly as possible. We will be providing unlimited waivers of publication charges for accepted research articles as well as case reports and case series related to COVID-19. Review articles are excluded from this waiver policy. Sign up here as a reviewer to help fast-track new submissions.