Table of Contents Author Guidelines Submit a Manuscript
International Journal of Alzheimer’s Disease
Volume 2010, Article ID 163065, 4 pages
http://dx.doi.org/10.4061/2010/163065
Review Article

Cerebrospinal Fluid Analysis Should Be Considered in Patients with Cognitive Problems

Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, 431 80 Mölndal, Sweden

Received 16 January 2010; Accepted 2 March 2010

Academic Editor: Lucilla Parnetti

Copyright © 2010 Henrik Zetterberg et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Blennow, M. J. de Leon, and H. Zetterberg, “Alzheimer's disease,” The Lancet, vol. 368, no. 9533, pp. 387–403, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. N. Andreasen, L. Minthon, P. Davidsson et al., “Evaluation of CSF-tau and CSF-Aß42 as diagnostic markers for Alzheimer disease in clinical practice,” Archives of Neurology, vol. 58, no. 3, pp. 373–379, 2001. View at Google Scholar · View at Scopus
  3. K. Blennow, A. Wallin, and O. Hager, “Low frequency of post-lumbar puncture headache in demented patients,” Acta Neurologica Scandinavica, vol. 88, no. 3, pp. 221–223, 1993. View at Google Scholar · View at Scopus
  4. E. R. Peskind, R. Riekse, J. F. Quinn et al., “Safety and acceptability of the research lumbar puncture,” Alzheimer Disease and Associated Disorders, vol. 19, no. 4, pp. 220–225, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Strozyk, K. Blennow, L. R. White, and L. J. Launer, “CSF Aβ 42 levels correlate with amyloid-neuropathology in a population-based autopsy study,” Neurology, vol. 60, no. 4, pp. 652–656, 2003. View at Google Scholar · View at Scopus
  6. A. M. Fagan, M. A. Mintun, R. H. Mach et al., “Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta 42 in humans,” Annals of Neurology, vol. 59, no. 3, pp. 512–519, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Forsberg, H. Engler, O. Almkvist et al., “PET imaging of amyloid deposition in patients with mild cognitive impairment,” Neurobiology of Aging, vol. 29, no. 10, pp. 1456–1465, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Grimmer, M. Riemenschneider, H. Forstl et al., “Beta amyloid in Alzheimer's disease: increased deposition in brain is reflected in reduced concentration in cerebrospinal fluid,” Biological Psychiatry, vol. 65, no. 11, pp. 927–934, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. A. M. Fagan, D. Head, A. R. Shah et al., “Decreased cerebrospinal fluid Aß42 correlates with brain atrophy in cognitively normal elderly,” Annals of Neurology, vol. 65, no. 2, pp. 176–183, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. D. R. Gustafson, I. Skoog, L. Rosengren, H. Zetterberg, and K. Blennow, “Cerebrospinal fluid β-amyloid 1-42 concentration may predict cognitive decline in older women,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 78, no. 5, pp. 461–464, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. E. Stomrud, O. Hansson, K. Blennow, L. Minthon, and E. Londos, “Cerebrospinal fluid biomarkers predict decline in subjective cognitive function over 3 years in healthy elderly,” Dementia and Geriatric Cognitive Disorders, vol. 24, no. 2, pp. 118–124, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Otto, H. Esselmann, W. Schulz-Schaeffer et al., “Decreased ß-amyloid1-42 in cerebrospinal fluid of patients with Creutzfeldt-Jakob disease,” Neurology, vol. 54, no. 5, pp. 1099–1102, 2000. View at Google Scholar · View at Scopus
  13. J. Q. Trojanowski, T. Schuck, M. L. Schmidt, and V. M.-Y. Lee, “Distribution of tau proteins in the normal human central and peripheral nervous system,” Journal of Histochemistry and Cytochemistry, vol. 37, no. 2, pp. 209–215, 1989. View at Google Scholar · View at Scopus
  14. S. Lovestone and C. H. Reynolds, “The phosphorylation of tau: a critical stage in neurodevelopment and neurodegenerative process,” Neuroscience, vol. 78, no. 2, pp. 309–324, 1997. View at Publisher · View at Google Scholar · View at Scopus
  15. N. Mattsson, K. Sävman, G. Österlundh, K. Blennow, and H. Zetterberg, “Converging molecular pathways in human neural development and degeneration,” Neuroscience Research, vol. 66, no. 3, pp. 330–332, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Ballatore, V. M.-Y. Lee, and J. Q. Trojanowski, “Tau-mediated neurodegeneration in Alzheimer's disease and related disorders,” Nature Reviews Neuroscience, vol. 8, no. 9, pp. 663–672, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Hampel, K. Blennow, L. M. Shaw, Y. C. Hoessler, H. Zetterberg, and J. Q. Trojanowski, “Total and phosphorylated tau protein as biological markers of Alzheimer's disease,” Experimental Gerontology, vol. 45, no. 1, pp. 30–40, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Buerger, S. J. Teipel, R. Zinkowski et al., “CSF tau protein phosphorylated at threonine 231 correlates with cognitive decline in MCI subjects,” Neurology, vol. 59, no. 4, pp. 627–629, 2002. View at Google Scholar · View at Scopus
  19. K. Buerger, M. Ewers, T. Pirttilä et al., “CSF phosphorylated tau protein correlates with neocortical neurofibrillary pathology in Alzheimer's disease,” Brain, vol. 129, no. 11, pp. 3035–3041, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Bian, J. C. Van Swieten, S. Leight et al., “CSF biomarkers in frontotemporal lobar degeneration with known pathology,” Neurology, vol. 70, no. 19, pp. 1827–1835, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Grossman, J. Farmer, S. Leight et al., “Cerebrospinal fluid profile in frontotemporal dementia and Alzheimer's disease,” Annals of Neurology, vol. 57, no. 5, pp. 721–729, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Blennow, A. Johansson, and H. Zetterberg, “Diagnostic value of 14-3-3beta immunoblot and T-tau/P-tau ratio in clinically suspected Creutzfeldt-Jakob disease,” International Journal of Molecular Medicine, vol. 16, no. 6, pp. 1147–1149, 2005. View at Google Scholar · View at Scopus
  23. M. Riemenschneider, S. Wagenpfeil, H. Vanderstichele et al., “Phospho-tau/total tau ratio in cerebrospinal fluid discriminates Creutzfeldt-Jakob disease from other dementias,” Molecular Psychiatry, vol. 8, no. 3, pp. 343–347, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Otto, J. Wiltfang, L. Cepek et al., “Tau protein and 14-3-3 protein in the differential diagnosis of Creutzfeldt-Jakob disease,” Neurology, vol. 58, no. 2, pp. 192–197, 2002. View at Google Scholar · View at Scopus
  25. M. Otto, J. Wiltfang, H. Tumani et al., “Elevated levels of tau-protein in cerebrospinal fluid of patients with Creutzfeldt-Jakob disease,” Neuroscience Letters, vol. 225, no. 3, pp. 210–212, 1997. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Hesse, L. Rosengren, N. Andreasen et al., “Transient increase in total tau but not phospho-tau in human cerebrospinal fluid after acute stroke,” Neuroscience Letters, vol. 297, no. 3, pp. 187–190, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Ost, K. Nylen, L. Csajbok et al., “Initial CSF total tau correlates with 1-year outcome in patients with traumatic brain injury,” Neurology, vol. 67, no. 9, pp. 1600–1604, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Zetterberg, M. A. Hietala, M. Jonsson et al., “Neurochemical aftermath of amateur boxing,” Archives of Neurology, vol. 63, no. 9, pp. 1277–1280, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Samgard, H. Zetterberg, K. Blennow, O. Hansson, L. Minthon, and E. Londos, “Cerebrospinal fluid total tau as a marker of Alzheimer's disease intensity,” International Journal of Geriatric Psychiatry, vol. 25, no. 4, pp. 403–410, 2009. View at Publisher · View at Google Scholar
  30. E. S. Blom, V. Giedraitis, H. Zetterberg et al., “Rapid progression from mild cognitive impairment to Alzheimer's disease in subjects with elevated levels of tau in cerebrospinal fluid and the APOE epsilon4/epsilon4 genotype,” Dementia and Geriatric Cognitive Disorders, vol. 27, no. 5, pp. 458–464, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Buerger, M. Ewers, N. Andreasen et al., “Phosphorylated tau predicts rate of cognitive decline in MCI subjects: a comparative CSF study,” Neurology, vol. 65, no. 9, pp. 1502–1503, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. F. Bostrom, O. Hansson, K. Blennow et al., “Cerebrospinal fluid total tau is associated with shorter survival in dementia with lewy bodies,” Dementia and Geriatric Cognitive Disorders, vol. 28, no. 4, pp. 314–319, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. O. Hansson, H. Zetterberg, P. Buchhave, E. Londos, K. Blennow, and L. Minthon, “Association between CSF biomarkers and incipient Alzheimer's disease in patients with mild cognitive impairment: a follow-up study,” Lancet Neurology, vol. 5, no. 3, pp. 228–234, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. N. Mattsson, H. Zetterberg, O. Hansson et al., “CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment,” Journal of the American Medical Association, vol. 302, no. 4, pp. 385–393, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. L. M. Shaw, H. Vanderstichele, M. Knapik-Czajka et al., “Cerebrospinal fluid biomarker signature in Alzheimer's disease neuroimaging initiative subjects,” Annals of Neurology, vol. 65, no. 4, pp. 403–413, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. P. J. Visser, F. Verhey, D. L. Knol et al., “Prevalence and prognostic value of CSF markers of Alzheimer's disease pathology in patients with subjective cognitive impairment or mild cognitive impairment in the DESCRIPA study: a prospective cohort study,” The Lancet Neurology, vol. 8, no. 7, pp. 619–627, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. L. E. Rosengren, J.-E. Karlsson, M. Sjogren, K. Blennow, and A. Wallin, “Neurofilament protein levels in CSF are increased in dementia,” Neurology, vol. 52, no. 5, pp. 1090–1093, 1999. View at Google Scholar · View at Scopus
  38. A. Agren-Wilsson, A. Lekman, W. Sjoberg et al., “CSF biomarkers in the evaluation of idiopathic normal pressure hydrocephalus,” Acta Neurologica Scandinavica, vol. 116, no. 5, pp. 333–339, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Wallin and M. Sjogren, “Cerebrospinal fluid cytoskeleton proteins in patients with subcortical white-matter dementia,” Mechanisms of Ageing and Development, vol. 122, no. 16, pp. 1937–1949, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. D. de Jong, R. W. Jansen, Y. A. L. Pijnenburg et al., “CSF neurofilament proteins in the differential diagnosis of dementia,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 78, no. 9, pp. 936–938, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. N. Norgren, P. Sundström, A. Svenningsson, L. Rosengren, T. Stigbrand, and M. Gunnarsson, “Neurofilament and glial fibrillary acidic protein in multiple sclerosis,” Neurology, vol. 63, no. 9, pp. 1586–1590, 2004. View at Google Scholar · View at Scopus
  42. M. Gisslen, L. Hagberg, B. J. Brew, P. Cinque, R. W. Price, and L. Rosengren, “Elevated cerebrospinal fluid neurofilament light protein concentrations predict the development of AIDS dementia complex,” Journal of Infectious Diseases, vol. 195, no. 12, pp. 1774–1778, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. H. Reiber and J. B. Peter, “Cerebrospinal fluid analysis: disease-related data patterns and evaluation programs,” Journal of the Neurological Sciences, vol. 184, no. 2, pp. 101–122, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. K. Blennow, A. Wallin, P. Fredman, I. Karlsson, C. G. Gottfries, and L. Svennerholm, “Blood-brain barrier disturbance in patients with Alzheimer's disease is related to vascular factors,” Acta Neurologica Scandinavica, vol. 81, no. 4, pp. 323–326, 1990. View at Google Scholar · View at Scopus
  45. A. Wallin, K. Blennow, and L. Rosengren, “Cerebrospinal fluid markers of pathogenetic processes in vascular dementia, with special reference to the subcortical subtype,” Alzheimer Disease and Associated Disorders, vol. 13, no. 3, pp. S102–S105, 1999. View at Google Scholar · View at Scopus
  46. H. Tumani, G. Nolker, and H. Reiber, “Relevance of cerebrospinal fluid variables for early diagnosis of neuroborreliosis,” Neurology, vol. 45, no. 9, pp. 1663–1670, 1995. View at Google Scholar · View at Scopus
  47. K. Blennow, A. Wallin, P. Fredman, C. G. Gottfries, I. Karlsson, and L. Svennerholm, “Intrathecal synthesis of immunoglobulins in patients with Alzheimer's disease,” European Neuropsychopharmacology, vol. 1, no. 1, pp. 79–81, 1990. View at Google Scholar · View at Scopus