Table of Contents Author Guidelines Submit a Manuscript
International Journal of Alzheimer’s Disease
Volume 2010, Article ID 986310, 11 pages
http://dx.doi.org/10.4061/2010/986310
Research Article

Confounding Factors Influencing Amyloid Beta Concentration in Cerebrospinal Fluid

1Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, 431 80 Mölndal, Sweden
2Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, 205 02 Malmö, Sweden
3Forensic Psychiatry, Institute of Neuroscience and Psychology, The Sahlgrenska Academy at University of Gothenburg, 422 50 Gothenburg, Sweden
4Department of Neurobiology, Karolinska Institute, Caring Sciences and Society, Karolinska University Hospital, Huddinge, 141 86 Stockholm, Sweden
5Department of Geriatric Medicine, Karolinska Institute, Memory Clinic, M51, Karolinska University Hospital, Huddinge, 141 86 Stockholm, Sweden

Received 15 March 2010; Accepted 7 June 2010

Academic Editor: Lucilla Parnetti

Copyright © 2010 Maria Bjerke et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Wimo, B. Winblad, H. Aguero-Torres, and E. von Strauss, “The magnitude of dementia occurrence in the world,” Alzheimer Disease and Associated Disorders, vol. 17, no. 2, pp. 63–67, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Lobo, L. J. Launer, L. Fratiglioni et al., “Prevalence of dementia and major subtypes in Europe: a collaborative study of population-based cohorts. Neurologic Diseases in the Elderly Research Group,” Neurology, vol. 54, no. 11, supplement 5, pp. S4–S9, 2000. View at Google Scholar · View at Scopus
  3. H. Braak and E. Braak, “Neuropathological stageing of Alzheimer-related changes,” Acta Neuropathologica, vol. 82, no. 4, pp. 239–259, 1991. View at Google Scholar · View at Scopus
  4. B. E. Tomlinson, G. Blessed, and M. Roth, “Observations on the brains of demented old people,” Journal of the Neurological Sciences, vol. 11, no. 3, pp. 205–242, 1970. View at Google Scholar · View at Scopus
  5. K. Blennow, M. J. de Leon, and H. Zetterberg, “Alzheimer's disease,” The Lancet, vol. 368, no. 9533, pp. 387–403, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Blennow and H. Zetterberg, “Cerebrospinal fluid biomarkers for Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 18, no. 2, pp. 413–417, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Davies, J. Resnick, B. Resnick et al., “Consensus report of the working group on: “Molecular and biochemical markers of Alzheimer's disease”,” Neurobiology of Aging, vol. 19, no. 2, pp. 109–116, 1998. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Hardy and D. J. Selkoe, “The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics,” Science, vol. 297, no. 5580, pp. 353–356, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Blennow, H. Hampel, M. Weiner, and H. Zetterberg, “Cerebrospinal fluid and plasma biomarkers in Alzheimer disease,” Nature Reviews Neurology, vol. 6, no. 3, pp. 131–144, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Mattsson, H. Zetterberg, O. Hansson et al., “CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment,” Journal of the American Medical Association, vol. 302, no. 4, pp. 385–393, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. J. C. Morris and J. L. Price, “Pathologic correlates of nondemented aging, mild cognitive impairment, and early-stage Alzheimer's disease,” Journal of Molecular Neuroscience, vol. 17, no. 2, pp. 101–118, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Blennow, “Cerebrospinal fluid protein biomarkers for Alzheimer's disease,” NeuroRx, vol. 1, no. 2, pp. 213–225, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Blennow and H. Hampel, “CSF markers for incipient Alzheimer's disease,” Lancet Neurology, vol. 2, no. 10, pp. 605–613, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. S.-K. Herukka, M. Hallikainen, H. Soininen, and T. Pirttilä, “CSF Aβ42 and tau or phosphorylated tau and prediction of progressive mild cognitive impairment,” Neurology, vol. 64, no. 7, pp. 1294–1297, 2005. View at Google Scholar · View at Scopus
  15. O. Hansson, H. Zetterberg, P. Buchhave, E. Londos, K. Blennow, and L. Minthon, “Association between CSF biomarkers and incipient Alzheimer's disease in patients with mild cognitive impairment: a follow-up study,” Lancet Neurology, vol. 5, no. 3, pp. 228–234, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. I. Skoog, P. Davidsson, Ó. Aevarsson, H. Vanderstichele, E. Vanmechelen, and K. Blennow, “Cerebrospinal fluid beta-amyloid 42 is reduced before the onset of sporadic dementia: a population-based study in 85-year-olds,” Dementia and Geriatric Cognitive Disorders, vol. 15, no. 3, pp. 169–176, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. D. R. Gustafson, I. Skoog, L. Rosengren, H. Zetterberg, and K. Blennow, “Cerebrospinal fluid β-amyloid 1–42 concentration may predict cognitive decline in older women,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 78, no. 5, pp. 461–464, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Sunderland, G. Linker, N. Mirza et al., “Decreased β-amyloid1–42 and increased tau levels in cerebrospinal fluid of patients with Alzheimer disease,” Journal of the American Medical Association, vol. 289, no. 16, pp. 2094–2103, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Plebani, “Errors in clinical laboratories or errors in laboratory medicine?” Clinical Chemistry and Laboratory Medicine, vol. 44, no. 6, pp. 750–759, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders, American Psychiatric Association, Washington DC, USA, 3rd edition, 1987.
  21. G. McKhann, D. Drachman, and M. Folstein, “Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer's disease,” Neurology, vol. 34, no. 7, pp. 939–944, 1984. View at Google Scholar
  22. A. Olsson, H. Vanderstichele, N. Andreasen et al., “Simultaneous measurement of β-amyloid(1–42), total tau, and phosphorylated tau (Thr181) in cerebrospinal fluid by the xMAP technology,” Clinical Chemistry, vol. 51, no. 2, pp. 336–345, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Vanderstichele, K. Blennow, N. D'Heuvaert et al., “Development of a specific diagnostic test for measurement of ß-amyloid(1–42) in CSF,” in Progress in Alzheimer's and Parkinson's Diseases, A. Fisher, I. Hanin, and M. Yoshida, Eds., pp. 773–778, Plenum Press, New York, NY, USA, 1998. View at Google Scholar
  24. H. Vanderstichele, E. Van Kerschaver, C. Hesse et al., “Standardization of measurement of β-amyloid((1–42)) in cerebrospinal fluid and plasma,” Amyloid, vol. 7, no. 4, pp. 245–258, 2000. View at Google Scholar · View at Scopus
  25. K. Blennow, G. de Meyer, O. Hansson et al., “Evolution of Aβ42 and Aβ40 levels and Aβ42/Aβ40 ratio in plasma during progression of Alzheimer's disease: a multicenter assessment,” Journal of Nutrition, Health and Aging, vol. 13, no. 3, pp. 205–208, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. S. F. Hansson, U. Andréasson, M. Wall et al., “Reduced levels of amyloid-β-binding proteins in cerebrospinal fluid from Alzheimer's disease patients,” Journal of Alzheimer's Disease, vol. 16, no. 2, pp. 389–397, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. N. Ida, T. Hartmann, J. Pantel et al., “Analysis of heterogeneous βA4 peptides in human cerebrospinal fluid and blood by a newly developed sensitive western blot assay,” Journal of Biological Chemistry, vol. 271, no. 37, pp. 22908–22914, 1996. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Jensen, T. Hartmann, B. Engvall et al., “Quantification of Alzheimer amyloid beta peptides ending at residues 40 and 42 by novel ELISA systems,” Molecular Medicine, vol. 6, no. 4, pp. 291–302, 2000. View at Google Scholar · View at Scopus
  29. R. Anckarsäter, N. Vasic, L. Jidéus et al., “Cerebrospinal fluid protein reactions during non-neurological surgery,” Acta Neurologica Scandinavica, vol. 115, no. 4, pp. 254–259, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. P. Lewczuk, G. Beck, H. Esselmann et al., “Effect of sample collection tubes on cerebrospinal fluid concentrations of tau proteins and amyloid β peptides,” Clinical Chemistry, vol. 52, no. 2, pp. 332–334, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. N. Andreasen, C. Hesse, P. Davidsson et al., “Cerebrospinal fluid β-amyloid((1–42)) in Alzheimer disease: differences between early- and late-onset Alzheimer disease and stability during the course of disease,” Archives of Neurology, vol. 56, no. 6, pp. 673–680, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Sjögren, H. Vanderstichele, H. Ågren et al., “Tau and Aβ42 in cerebrospinal fluid from healthy adults 21-93 years of age: establishment of reference values,” Clinical Chemistry, vol. 47, no. 10, pp. 1776–1781, 2001. View at Google Scholar · View at Scopus
  33. N. S. M. Schoonenboom, C. Mulder, H. Vanderstichele et al., “Effects of processing and storage conditions on amyloid β (1–42) and tau concentrations in cerebrospinal fluid: implications for use in clinical practice,” Clinical Chemistry, vol. 51, no. 1, pp. 189–195, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. E. Kaiser, P. Schönknecht, P. A. Thomann, A. Hunt, and J. Schröder, “Influence of delayed CSF storage on concentrations of phospho-tau protein (181), total tau protein and beta-amyloid (1–42),” Neuroscience Letters, vol. 417, no. 2, pp. 193–195, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. N. Andreasen, L. Minthon, P. Davidsson et al., “Evaluation of CSF-tau and CSF-Aβ42 as diagnostic markers for Alzheimer disease in clinical practice,” Archives of Neurology, vol. 58, no. 3, pp. 373–379, 2001. View at Google Scholar · View at Scopus
  36. O. Carrette, P. R. Burkhard, S. Hughes, D. F. Hochstrasser, and J.-C. Sanchez, “Truncated cystatin C in cerebrospiral fluid: technical artefact or biological process?” Proteomics, vol. 5, no. 12, pp. 3060–3065, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. S. F. Hansson, A. H. Simonsen, H. Zetterberg et al., “Cystatin C in cerebrospinal fluid and multiple sclerosis,” Annals of Neurology, vol. 62, no. 2, pp. 193–196, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. H. Reiber, “Proteins in cerebrospinal fluid and blood: barriers, CSF flow rate and source-related dynamics,” Restorative Neurology and Neuroscience, vol. 21, no. 3-4, pp. 79–96, 2003. View at Google Scholar · View at Scopus
  39. K. Blennow, P. Fredman, A. Wallin, C.-G. Gottfries, G. Langstrom, and L. Svennerholm, “Protein analyses in cerebrospinal fluid: I. Influence of concentration gradients for proteins on cerebrospinal fluid/serum albumin ratio,” European Neurology, vol. 33, no. 2, pp. 126–128, 1993. View at Google Scholar · View at Scopus
  40. K. Blennow, A. Wallin, C. G. Gottfries, J.-E. Mansson, and L. Svennerholm, “Concentration gradients for monoamine metabolites in lumbar cerebrospinal fluid,” Journal of Neural Transmission—Parkinson's Disease and Dementia Section, vol. 5, no. 1, pp. 5–15, 1993. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Petzold, L. T. Sharpe, and G. Keir, “Spectrophotometry for cerebrospinal fluid pigment analysis,” Neurocritical Care, vol. 4, no. 2, pp. 153–162, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. R. Fishman, Cerebrospinal Fluid in Disease of the Nervous System, Saunders, Philadelphia, Pa, USA, 1980.
  43. J.-S. Youl, V. Gelfanova, M. D. Knierman, F. A. Witzmann, M. Wang, and J. E. Hale, “The impact of blood contamination on the proteome of cerebrospinal fluid,” Proteomics, vol. 5, no. 1, pp. 290–296, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. A. L. Biere, B. Ostaszewski, E. R. Stimson, B. T. Hyman, J. E. Maggio, and D. J. Selkoe, “Amyloid β-peptide is transported on lipoproteins and albumin in human plasma,” Journal of Biological Chemistry, vol. 271, no. 51, pp. 32916–32922, 1996. View at Publisher · View at Google Scholar · View at Scopus
  45. S. R. Hughes, O. Khorkova, S. Goyal et al., “α2-macroglobulin associates with β-amyloid peptide and prevents fibril formation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 6, pp. 3275–3280, 1998. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Sagare, R. Deane, R. D. Bell et al., “Clearance of amyloid-β by circulating lipoprotein receptors,” Nature Medicine, vol. 13, no. 9, pp. 1029–1031, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. N. Le Bastard, L. Aerts, J. Leurs, W. Blomme, P. P. De Deyn, and S. Engelborghs, “No correlation between time-linked plasma and CSF Aβ levels,” Neurochemistry International, vol. 55, no. 8, pp. 820–825, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. H. Zetterberg, “Is plasma amyloid-β a reliable biomarker for Alzheimer's disease?” Recent Patents on CNS Drug Discovery, vol. 3, no. 2, pp. 109–111, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Sjögren, M. Gisslén, E. Vanmechelen, and K. Blennow, “Low cerebrospinal fluid β-amyloid 42 in patients with acute bacterial meningitis and normalization after treatment,” Neuroscience Letters, vol. 314, no. 1-2, pp. 33–36, 2001. View at Publisher · View at Google Scholar · View at Scopus
  50. R. J. Bateman, G. Wen, J. C. Morris, and D. M. Holtzman, “Fluctuations of CSF amyloid-β levels: implications for a diagnostic and therapeutic biomarker,” Neurology, vol. 68, no. 9, pp. 666–669, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. D. M. Walsh, B. P. Tseng, R. E. Rydel, M. B. Podlisny, and D. J. Selkoe, “The oligomerization of amyloid β-protein begins intracellularly in cells derived from human brain,” Biochemistry, vol. 39, no. 35, pp. 10831–10839, 2000. View at Publisher · View at Google Scholar · View at Scopus
  52. C. Fabrizi, R. Businaro, G. M. Lauro, and L. Fumagalli, “Role of alpha2-macroglobulin in regulating amyloid beta-protein neurotoxicity: protective or detrimental factor?” Journal of Neurochemistry, vol. 78, pp. 406–412, 2001. View at Google Scholar
  53. W. J. Strittmatter, A. M. Saunders, D. Schmechel et al., “Apolipoprotein E: high-avidity binding to β-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 5, pp. 1977–1981, 1993. View at Google Scholar · View at Scopus
  54. J. Ghiso, E. Matsubara, A. Koudinov et al., “The cerebrospinal-fluid soluble form of Alzheimer's amyloid beta is complexed to SP-40,40 (apolipoprotein J), an inhibitor of the complement membrane-attack complex,” Biochemical Journal, vol. 293, no. 1, pp. 27–30, 1993. View at Google Scholar · View at Scopus
  55. E. Matsubara, B. Frangione, and J. Ghiso, “Characterization of apolipoprotein J-Alzheimer's Aβ interaction,” Journal of Biological Chemistry, vol. 270, no. 13, pp. 7563–7567, 1995. View at Publisher · View at Google Scholar · View at Scopus
  56. J. Herz and P. Marschang, “Coaxing the LDL receptor family into the fold,” Cell, vol. 112, no. 3, pp. 289–292, 2003. View at Publisher · View at Google Scholar · View at Scopus
  57. A. L. Schwarzman, L. Gregori, M. P. Vitek et al., “Transthyretin sequesters amyloid β protein and prevents amyloid formation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 18, pp. 8368–8372, 1994. View at Google Scholar · View at Scopus
  58. M. A. Pericak-Vance, J. L. Bebout, P. C. Gaskell Jr. et al., “Linkage studies in familial Alzheimer disease: evidence for chromosome 19 linkage,” American Journal of Human Genetics, vol. 48, no. 6, pp. 1034–1050, 1991. View at Google Scholar · View at Scopus
  59. J. Kuusisto, K. Koivisto, K. Kervinen et al., “Association of apolipoprotein E phenotypes with late onset Alzheimer's disease: population based study,” British Medical Journal, vol. 309, no. 6955, pp. 636–638, 1994. View at Google Scholar · View at Scopus
  60. T. Tokuda, M. Calero, E. Matsubara et al., “Lipidation of apolipoprotein E influences its isoform-specific interaction with Alzheimer's amyloid β peptides,” Biochemical Journal, vol. 348, no. 2, pp. 359–365, 2000. View at Publisher · View at Google Scholar · View at Scopus
  61. J. Wiltfang, H. Esselmann, M. Bibl et al., “Highly conserved and disease-specific patterns of carboxyterminally truncated Aβ peptides 1–37/38/39 in addition to 1–40/42 in Alzheimer's disease and in patients with chronic neuroinflammation,” Journal of Neurochemistry, vol. 81, no. 3, pp. 481–496, 2002. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Bibl, H. Esselmann, M. Otto et al., “Cerebrospinal fluid amyloid β peptide patterns in Alzheimer's disease patients and nondemented controls depend on sample pretreatment: indication of carrier-mediated epitope masking of amyloid β peptides,” Electrophoresis, vol. 25, no. 17, pp. 2912–2918, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. P. Lewczuk, G. Beck, O. Ganslandt et al., “International quality control survey of neurochemical dementia diagnostics,” Neuroscience Letters, vol. 409, no. 1, pp. 1–4, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. N. A. Verwey, W. M. van der Flier, K. Blennow et al., “A worldwide multicentre comparison of assays for cerebrospinal fluid biomarkers in Alzheimer's disease,” Annals of Clinical Biochemistry, vol. 46, no. 3, pp. 235–240, 2009. View at Publisher · View at Google Scholar · View at Scopus