Table of Contents Author Guidelines Submit a Manuscript
International Journal of Alzheimer’s Disease
Volume 2011, Article ID 189728, 12 pages
http://dx.doi.org/10.4061/2011/189728
Review Article

GSK3 Function in the Brain during Development, Neuronal Plasticity, and Neurodegeneration

Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70-228, 04510 Ciudad de México, Mexico

Received 1 February 2011; Accepted 7 March 2011

Academic Editor: Peter Crouch

Copyright © 2011 Pamela Salcedo-Tello et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. Stambolic, L. Ruel, and J. R. Woodgett, “Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells,” Current Biology, vol. 6, no. 12, pp. 1664–1668, 1996. View at Google Scholar · View at Scopus
  2. S. Frame and P. Cohen, “GSK3 takes centre stage more than 20 years after its discovery,” Biochemical Journal, vol. 359, no. 1, pp. 1–16, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. N. Embi, D. B. Rylatt, and P. Cohen, “Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase,” European Journal of Biochemistry, vol. 107, no. 2, pp. 519–527, 1980. View at Google Scholar · View at Scopus
  4. J. R. Woodgett, “Molecular cloning and expression of glycogen synthase kinase-3/Factor A,” EMBO Journal, vol. 9, no. 8, pp. 2431–2438, 1990. View at Google Scholar · View at Scopus
  5. S. E. Plyte, K. Hughes, E. Nikolakaki, B. J. Pulverer, and J. R. Woodgett, “Glycogen synthase kinase-3: functions in oncogenesis and development,” Biochimica et Biophysica Acta, vol. 1114, no. 2-3, pp. 147–162, 1992. View at Publisher · View at Google Scholar · View at Scopus
  6. F. Mukai, K. Ishiguro, Y. Sano, and S. C. Fujita, “Aternative splicing isoform of tau protein kinase I/glycogen synthase kinase 3β,” Journal of Neurochemistry, vol. 81, no. 5, pp. 1073–1083, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Ali, K. P. Hoeflich, and J. R. Woodgett, “Glycogen synthase kinase-3: properties, functions, and regulation,” Chemical Reviews, vol. 101, no. 8, pp. 2527–2540, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Cohen and S. Frame, “The renaissance of GSK3,” Nature Reviews Molecular Cell Biology, vol. 2, no. 10, pp. 769–776, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. J. R. Woodgett, “Judging a protein by more than its name: GSK-3,” Science"s STKE, vol. 2001, no. 100, p. RE12, 2001. View at Google Scholar · View at Scopus
  10. P. Cohen and M. Goedert, “GSK3 inhibitors: development and therapeutic potential,” Nature Reviews Drug Discovery, vol. 3, no. 6, pp. 479–487, 2004. View at Google Scholar · View at Scopus
  11. K. Hughes, E. Nikolakaki, S. E. Plyte, N. F. Totty, and J. R. Woodgett, “Modulation of the glycogen synthase kinase-3 family by tyrosine phosphorylation,” EMBO Journal, vol. 12, no. 2, pp. 803–808, 1993. View at Google Scholar · View at Scopus
  12. Q. M. Wang, C. J. Fiol, A. A. DePaoli-Roach, and P. J. Roach, “Glycogen synthase kinase-3β is a dual specificity kinase differentially regulated by tyrosine and serine/threonine phosphorylation,” Journal of Biological Chemistry, vol. 269, no. 20, pp. 14566–14574, 1994. View at Google Scholar · View at Scopus
  13. P. A. Lochhead, R. Kinstrie, G. Sibbet, T. Rawjee, N. Morrice, and V. Cleghone, “A chaperone-dependent GSK3β transitional intermediate mediates activation-loop autophosphorylation,” Molecular Cell, vol. 24, no. 4, pp. 627–633, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. J. A. Hartigan, W. C. Xiong, and G. V. W. Johnson, “Glycogen synthase kinase 3β is tyrosine phosphorylated by PYK2,” Biochemical and Biophysical Research Communications, vol. 284, no. 2, pp. 485–489, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Cole, S. Frame, and P. Cohen, “Further evidence that the tyrosine phosphorylation of glycogen synthase kinase-3 (GSK3) in mammalian cells is an autophosphorylation event,” Biochemical Journal, vol. 377, no. 1, pp. 249–255, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. R. S. Jope and G. V. W. Johnson, “The glamour and gloom of glycogen synthase kinase-3,” Trends in Biochemical Sciences, vol. 29, no. 2, pp. 95–102, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. T. M. Thornton, G. Pedraza-Alva, B. Deng et al., “Phosphorylation by p38 MAPK as an alternative pathway for GSK3β inactivation,” Science, vol. 320, no. 5876, pp. 667–670, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. K. M. Cadigan and Y. I. Liu, “Wnt signaling: complexity at the surface,” Journal of Cell Science, vol. 119, no. 3, pp. 395–402, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. P. Goñi-Oliver, J. J. Lucas, J. Avila, and F. Hernández, “N-terminal cleavage of GSK-3 by calpain: a new form of GSK-3 regulation,” Journal of Biological Chemistry, vol. 282, no. 31, pp. 22406–22413, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. G. N. Bijur and R. S. Jope, “Glycogen synthase kinase-3 beta is highly activated in nuclei and mitochondria,” Neuroreport, vol. 14, no. 18, pp. 2415–2419, 2003. View at Google Scholar · View at Scopus
  21. P. H. Sugden, S. J. Fuller, S. C. Weiss, and A. Clerk, “Glycogen synthase kinase 3 (GSK3) in the heart: a point of integration in hypertrophic signalling and a therapeutic target? A critical analysis,” British Journal of Pharmacology, vol. 153, no. 1, pp. S137–S153, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. F. Hernández, E. G. de Barreda, A. Fuster-Matanzo, P. Goñi-Oliver, J. J. Lucas, and J. Avila, “The role of GSK3 in Alzheimer disease,” Brain Research Bulletin, vol. 80, no. 4-5, pp. 248–250, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. H. B. Yao, P. C. Shaw, C. C. Wong, and D. C. C. Wan, “Expression of glycogen synthase kinase-3 isoforms in mouse tissues and their transcription in the brain,” Journal of Chemical Neuroanatomy, vol. 23, no. 4, pp. 291–297, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. K. P. Giese, “GSK-3: a key player in neurodegeneration and memory,” IUBMB Life, vol. 61, no. 5, pp. 516–521, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. S. J. Lee, Y. H. Chung, K. M. Joo et al., “Age-related changes in glycogen synthase kinase 3β (GSK3β) immunoreactivity in the central nervous system of rats,” Neuroscience Letters, vol. 409, no. 2, pp. 134–139, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Takahashi, K. Tomizawa, R. Kato et al., “Localization and developmental changes of τ protein kinase I/glycogen synthase kinase-3β in rat brain,” Journal of Neurochemistry, vol. 63, no. 1, pp. 245–255, 1994. View at Google Scholar · View at Scopus
  27. M. Takahashi, K. Tomizawa, and K. Ishiguro, “Distribution of tau protein kinase I/glycogen synthase kinase-3β, phosphatases 2A and 2B, and phosphorylated tau in the developing rat brain,” Brain Research, vol. 857, no. 1-2, pp. 193–206, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. K. Leroy and J. P. Brion, “Developmental expression and localization of glycogen synthase kinase-3β in rat brain,” Journal of Chemical Neuroanatomy, vol. 16, no. 4, pp. 279–293, 1999. View at Publisher · View at Google Scholar · View at Scopus
  29. M. P.M. Soutar, W. -Y. Kim, R. Williamson et al., “Evidence that glycogen synthase kinase-3 isoforms have distinct substrate preference in the brain,” Journal of Neurochemistry, vol. 115, no. 4, pp. 974–983, 2010. View at Publisher · View at Google Scholar
  30. R. G. Goold and P. R. Gordon-Weeks, “Glycogen synthase kinase 3β and the regulation of axon growth,” Biochemical Society Transactions, vol. 32, no. 5, pp. 809–811, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. N. Trivedi, P. Marsh, R. G. Goold, A. Wood-Kaczmar, and P. R. Gordon-Weeks, “Glycogen synthase kinase-3β phosphorylation of MAP1B at Ser1260 and Thr1265 is spatially restricted to growing axons,” Journal of Cell Science, vol. 118, no. 5, pp. 993–1005, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. Z. Castaño, P. R. Gordon-Weeks, and R. M. Kypta, “The neuron-specific isoform of glycogen synthase kinase-3β is required for axon growth,” Journal of Neurochemistry, vol. 113, no. 1, pp. 117–130, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. W. T. O'Brien, A. D. Harper, F. Jové et al., “Glycogen synthase kinase-3β haploinsufficiency mimics the behavioral and molecular effects of lithium,” Journal of Neuroscience, vol. 24, no. 30, pp. 6791–6798, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. J. M. Beaulieu, X. Zhang, R. M. Rodriguiz et al., “Role of GSK3β in behavioral abnormalities induced by serotonin deficiency,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 4, pp. 1333–1338, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. T. Kimura, S. Yamashita, S. Nakao et al., “GSK-3β is required for memory reconsolidation in adult brain,” PLoS One, vol. 3, no. 10, Article ID e3540, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. K. MacAulay, B. W. Doble, S. Patel et al., “Glycogen synthase kinase 3α-specific regulation of murine hepatic glycogen metabolism,” Cell Metabolism, vol. 6, no. 4, pp. 329–337, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. O. Kaidanovich-Beilin, T. V. Lipina, K. Takao et al., “Abnormalities in brain structure and behavior in GSK-3alpha mutant mice,” Molecular Brain, vol. 2, no. 1, article no. 35, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Prickaerts, D. Moechars, K. Cryns et al., “Transgenic mice overexpressing glycogen synthase kinase 3β: a putative model of hyperactivity and mania,” Journal of Neuroscience, vol. 26, no. 35, pp. 9022–9029, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. E. G. de Barreda, M. Pérez, P. Gómez-Ramos et al., “Tau-knockout mice show reduced GSK3-induced hippocampal degeneration and learning deficits,” Neurobiology of Disease, vol. 37, no. 3, pp. 622–629, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. F. Q. Zhou and W. D. Snider, “GSK-3β and microtubule assembly in axons,” Science, vol. 308, no. 5719, pp. 211–214, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. J. M. Beaulieu, R. R. Gainetdinov, and M. G. Caron, “Akt/GSK3 signaling in the action of psychotropic drugs,” Annual Review of Pharmacology and Toxicology, vol. 49, pp. 327–347, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. R. S. Jope and M. S. Roh, “Glycogen synthase kinase-3 (GSK3) in psychiatric disease and therapeutic interventions,” Current Drug Targets, vol. 7, no. 11, pp. 1421–1434, 2006. View at Google Scholar · View at Scopus
  43. M. P. Mazanetz and P. M. Fischer, “Untangling tau hyperphosphorylation in drug design for neurodegenerative diseases,” Nature Reviews Drug Discovery, vol. 6, no. 6, pp. 464–479, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Lovestone, R. Killick, M. Di Forti, and R. Murray, “Schizophrenia as a GSK-3 dysregulation disorder,” Trends in Neurosciences, vol. 30, no. 4, pp. 142–149, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. G. V. Rayasam, V. K. Tulasi, R. Sodhi, J. A. Davis, and A. Ray, “Glycogen synthase kinase 3: more than a namesake,” British Journal of Pharmacology, vol. 156, no. 6, pp. 885–898, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. F. Hernández, E. Gómez de Barreda, A. Fuster-Matanzo, J. J. Lucas, and J. Avila, “GSK3: a possible link between beta amyloid peptide and tau protein,” Experimental Neurology, vol. 223, no. 2, pp. 322–325, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. J. Avila, F. Wandosell, and F. Hernández, “Role of glycogen synthase kinase-3 in Alzheimer's disease pathogenesis and glycogen synthase kinase-3 inhibitors,” Expert Review of Neurotherapeutics, vol. 10, no. 5, pp. 703–710, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. E. E. Rodgers and A. B. Theibert, “Functions of PI 3-kinase in development of the nervous system,” International Journal of Developmental Neuroscience, vol. 20, no. 3–5, pp. 187–197, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. E. Castellano and J. Downward, “Role of RAS in the regulation of PI 3-kinase,” Current Topics in Microbiology and Immunology, vol. 346, pp. 143–169, 2010. View at Google Scholar
  50. J. Chen, S. P. Chang, and S. J. Tang, “Activity-dependent synaptic Wnt release regulates hippocampal long term potentiation,” Journal of Biological Chemistry, vol. 281, no. 17, pp. 11910–11916, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. S. D. Speese and V. Budnik, “Wnts: up-and-coming at the synapse,” Trends in Neurosciences, vol. 30, no. 6, pp. 268–275, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. G. G. Farías, J. A. Godoy, W. Cerpa, L. Varela-Nallar, and N. C. Inestrosa, “Wnt signaling modulates pre- and postsynaptic maturation: therapeutic considerations,” Developmental Dynamics, vol. 239, no. 1, pp. 94–101, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. E.-M. Hur and F.-Q. Zhou, “GSK3 signalling in neural development,” Nature Reviews Neuroscience, vol. 11, no. 8, pp. 539–551, 2010. View at Publisher · View at Google Scholar
  54. G. V. De Ferrari and and N. C. Inestrosa, “Wnt signaling function in Alzheimer's disease,” Brain Research Reviews, vol. 33, no. 1, pp. 1–12, 2000. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Wehrli, S. T. Dougan, K. Caldwell et al., “Arrow encodes an LDL-receptor-related protein essential for Wingless signalling,” Nature, vol. 407, no. 6803, pp. 527–530, 2000. View at Publisher · View at Google Scholar
  56. S. Ikeda, S. Kishida, H. Yamamoto, H. Murai, S. Koyama, and A. Kikuchi, “Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3β and β-catenin and promotes GSK-3β-dependent phosphorylation of β-catenin,” EMBO Journal, vol. 17, no. 5, pp. 1371–1384, 1998. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Van Noort and H. Clevers, “TCF transcription factors, mediators of Wnt-signaling in development and cancer,” Developmental Biology, vol. 244, no. 1, pp. 1–8, 2002. View at Publisher · View at Google Scholar · View at Scopus
  58. V. F. Taelman, R. Dobrowolski, J. -L. Plouhinec et al., “Wnt signaling requires sequestration of Glycogen Synthase Kinase 3 inside multivesicular endosomes,” Cell, vol. 143, no. 7, pp. 1136–1148, 2010. View at Publisher · View at Google Scholar
  59. Y. Kawano and R. Kypta, “Secreted antagonists of the Wnt signalling pathway,” Journal of Cell Science, vol. 116, no. 13, pp. 2627–2634, 2003. View at Publisher · View at Google Scholar · View at Scopus
  60. Y. Mao, X. Ge, C. L. Frank et al., “Disrupted in schizophrenia 1 regulates neuronal progenitor proliferation via modulation of GSK3β/β-catenin signaling,” Cell, vol. 136, no. 6, pp. 1017–1031, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. J. M. Beaulieu, T. D. Sotnikova, S. Marion, R. J. Lefkowitz, R. R. Gainetdinov, and M. G. Caron, “An Akt/β-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior,” Cell, vol. 122, no. 2, pp. 261–273, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. L. Mei and W. C. Xiong, “Neuregulin 1 in neural development, synaptic plasticity and schizophrenia,” Nature Reviews Neuroscience, vol. 9, no. 6, pp. 437–452, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. G. Mckenzie, G. Ward, Y. Stallwood et al., “Cellular notch responsiveness is defined by phosphoinositide 3-kinase-dependent-signals,” BMC Cell Biology, vol. 7, article no. 10, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. Y. Wang, S. L. Chan, L. Miele et al., “Involvement of Notch signaling in hippocampal synaptic plasticity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 25, pp. 9458–9462, 2004. View at Publisher · View at Google Scholar · View at Scopus
  65. P. R. Gordon-Weeks, “Microtubules and growth cone function,” Journal of Neurobiology, vol. 58, no. 1, pp. 70–83, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. F. R. Lucas, R. G. Goold, P. R. Gordon-Weeks, and P. C. Salinas, “Inhibition of GSK-3β leading to the loss of phosphorylated MAP-1B is an early event in axonal remodelling induced by WNT-7a or lithium,” Journal of Cell Science, vol. 111, no. 10, pp. 1351–1361, 1998. View at Google Scholar · View at Scopus
  67. R. G. Goold, R. Owen, and P. R. Gordon-Weeks, “Glycogen synthase kinase 3β phosphorylation of microtubule-associated protein 1B regulates the stability of microtubules in growth cones,” Journal of Cell Science, vol. 112, no. 19, pp. 3373–3384, 1999. View at Google Scholar · View at Scopus
  68. R. G. Goold and P. R. Gordon-Weeks, “The MAP kinase pathway is upstream of the activation of GSK3β that enables it to phosphorylate MAP1B and contributes to the stimulation of axon growth,” Molecular and Cellular Neuroscience, vol. 28, no. 3, pp. 524–534, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. C. González-Billault, J. A. Del Río, J. M. Ureña et al., “A role of MAP1B in reelin-dependent neuronal migration,” Cerebral Cortex, vol. 15, no. 8, pp. 1134–1145, 2005. View at Publisher · View at Google Scholar · View at Scopus
  70. W. Y. Kim, F. Q. Zhou, J. Zhou et al., “Essential roles for GSK-3s and GSK-3-primed substrates in neurotrophin-induced and hippocampal axon growth,” Neuron, vol. 52, no. 6, pp. 981–996, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. C. Conde and A. Cáceres, “Microtubule assembly, organization and dynamics in axons and dendrites,” Nature Reviews Neuroscience, vol. 10, no. 5, pp. 319–332, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. S. Geraldo and P. R. Gordon-Weeks, “Cytoskeletal dynamics in growth-cone steering,” Journal of Cell Science, vol. 122, no. 20, pp. 3595–3604, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. B. J. Eickholt, F. S. Walsh, and P. Doherty, “An inactive pool of GSK-3 at the leading edge of growth cones is implicated in Semaphorin 3A signaling,” Journal of Cell Biology, vol. 157, no. 2, pp. 211–217, 2002. View at Publisher · View at Google Scholar · View at Scopus
  74. S. H. Shi, T. Cheng, L. Y. Jan, and Y. N. Jan, “APC and GSK-3β are involved in mPar3 targeting to the nascent axon and establishment of neuronal polarity,” Current Biology, vol. 14, no. 22, pp. 2025–2032, 2004. View at Publisher · View at Google Scholar · View at Scopus
  75. H. Jiang, W. Guo, X. Liang, and YI. Rao, “Both the establishment and the maintenance of neuronal polarity require active mechanisms: critical roles of GSK-3β and its upstream regulators,” Cell, vol. 120, no. 1, pp. 123–135, 2005. View at Publisher · View at Google Scholar · View at Scopus
  76. T. Yoshimura, Y. Kawano, N. Arimura, S. Kawabata, A. Kikuchi, and K. Kaibuchi, “GSK-3β regulates phosphorylation of CRMP-2 and neuronal polarity,” Cell, vol. 120, no. 1, pp. 137–149, 2005. View at Publisher · View at Google Scholar · View at Scopus
  77. O. Krylova, J. Herreros, K. E. Cleverley et al., “WNT-3, expressed by motoneurons, regulates terminal arborization of neurotrophin-3-responsive spinal sensory neurons,” Neuron, vol. 35, no. 6, pp. 1043–1056, 2002. View at Publisher · View at Google Scholar · View at Scopus
  78. A. I. Lyuksyutova, C. C. Lu, N. Milanesio et al., “Anterior-posterior guidance of commissural axons by Wnt-frizzled signaling,” Science, vol. 302, no. 5652, pp. 1984–1988, 2003. View at Publisher · View at Google Scholar · View at Scopus
  79. R. Owen and P. R. Gordon-Weeks, “Inhibition of glycogen synthase kinase 3β in sensory neurons in culture alters filopodia dynamics and microtubule distribution in growth cones,” Molecular and Cellular Neuroscience, vol. 23, no. 4, pp. 626–637, 2003. View at Publisher · View at Google Scholar · View at Scopus
  80. O. Krylova, M. J. Messenger, and P. C. Salinas, “Dishevelled-1 regulates microtubule stability: a new function mediated by glycogen synthase kinase-3β,” Journal of Cell Biology, vol. 151, no. 1, pp. 83–93, 2000. View at Publisher · View at Google Scholar · View at Scopus
  81. A. Ahmad-Annuar, L. Ciani, I. Simeonidis et al., “Signaling across the synapse: a role for Wnt and Dishevelled in presynaptic assembly and neurotransmitter release,” Journal of Cell Biology, vol. 174, no. 1, pp. 127–139, 2006. View at Publisher · View at Google Scholar · View at Scopus
  82. Y. Endo and J. S. Rubin, “Wnt signaling and neurite outgrowth: insights and questions,” Cancer Science, vol. 98, no. 9, pp. 1311–1317, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. C. Gao and Y. G. Chen, “Dishevelled: the hub of Wnt signaling.,” Cellular Signalling, vol. 22, no. 5, pp. 717–727, 2010. View at Google Scholar · View at Scopus
  84. P. C. Salinas, “Retrograde signalling at the synapse: a role for Wnt proteins,” Biochemical Society Transactions, vol. 33, no. 6, pp. 1295–1298, 2005. View at Publisher · View at Google Scholar · View at Scopus
  85. P. C. Salinas, “Wnt factors in axonal remodelling and synaptogenesis,” Biochemical Society Symposium, vol. 65, pp. 101–109, 1999. View at Google Scholar · View at Scopus
  86. L. Ciani, O. Krylova, M. J. Smalley, T. C. Dale, and P. C. Salinas, “A divergent canonical WNT-signaling pathway regulates microtubule dynamics: dishevelled signals locally to stabilize microtubules,” Journal of Cell Biology, vol. 164, no. 2, pp. 243–253, 2004. View at Publisher · View at Google Scholar · View at Scopus
  87. A. C. Hall, F. R. Lucas, and P. C. Salinas, “Axonal remodeling and synaptic differentiation in the cerebellum is regulated by WNT-7a signaling,” Cell, vol. 100, no. 5, pp. 525–535, 2000. View at Google Scholar · View at Scopus
  88. F. R. Lucas and P. C. Salinas, “WNT-7a induces axonal remodeling and increases synapsin I levels in cerebellar neurons,” Developmental Biology, vol. 192, no. 1, pp. 31–44, 1997. View at Publisher · View at Google Scholar · View at Scopus
  89. L. S. Chin, L. Li, A. Ferreira, K. S. Kosik, and P. Greengard, “Impairment of axonal development and of synaptogenesis in hippocampal neurons of synapsin I-deficient mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 20, pp. 9230–9234, 1995. View at Publisher · View at Google Scholar · View at Scopus
  90. T. W. Rosahl, D. Spillane, M. Missler et al., “Essential functions of synapsins I and II in synaptic vesicle regulation,” Nature, vol. 375, no. 6531, pp. 488–493, 1995. View at Google Scholar · View at Scopus
  91. L.-Q. Zhu, S.-H. Wang, D. Liu et al., “Activation of glycogen synthase kinase-3 inhibits long-term potentiation with synapse-associated impairments,” Journal of Neuroscience, vol. 27, no. 45, pp. 12211–12220, 2007. View at Publisher · View at Google Scholar
  92. E. K. Davis, Y. Zou, and A. Ghosh, “Wnts acting through canonical and noncanonical signaling pathways exert opposite effects on hippocampal synapse formation,” Neural Development, vol. 3, no. 1, article no. 32, 2008. View at Publisher · View at Google Scholar · View at Scopus
  93. F. Plattner, M. Angelo, and K. P. Giese, “The roles of cyclin-dependent kinase 5 and glycogen synthase kinase 3 in tau hyperphosphorylation,” Journal of Biological Chemistry, vol. 281, no. 35, pp. 25457–25465, 2006. View at Publisher · View at Google Scholar · View at Scopus
  94. E. L. Clayton, N. Sue, K. J. Smillie et al., “Dynamin i phosphorylation by GSK3 controls activity-dependent bulk endocytosis of synaptic vesicles,” Nature Neuroscience, vol. 13, no. 7, pp. 845–851, 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. C. Pittenger and E. Kandel, “A genetic switch for long-term memory,” Comptes Rendus de l'Academie des Sciences - Serie III, vol. 321, no. 2-3, pp. 91–96, 1998. View at Publisher · View at Google Scholar · View at Scopus
  96. E. P. Huang, “Synaptic plasticity: going through phases with LTP,” Current Biology, vol. 8, no. 10, pp. R350–R352, 1998. View at Google Scholar · View at Scopus
  97. P. K. Stanton, “LTD, LTP, and the sliding threshold for long-term synaptic plasticity,” Hippocampus, vol. 6, no. 1, pp. 35–42, 1996. View at Publisher · View at Google Scholar · View at Scopus
  98. J. Lisman, “Long-term potentiation: outstanding questions and attempted synthesis,” Philosophical Transactions of the Royal Society B, vol. 358, no. 1432, pp. 829–842, 2003. View at Publisher · View at Google Scholar · View at Scopus
  99. R. C. Malenka and M. F. Bear, “LTP and LTD: an embarrassment of riches,” Neuron, vol. 44, no. 1, pp. 5–21, 2004. View at Publisher · View at Google Scholar · View at Scopus
  100. C. Hooper, V. Markevich, F. Plattner et al., “Glycogen synthase kinase-3 inhibition is integral to long-term potentiation,” European Journal of Neuroscience, vol. 25, no. 1, pp. 81–86, 2007. View at Publisher · View at Google Scholar · View at Scopus
  101. S. Peineau, C. Taghibiglou, C. Bradley et al., “LTP inhibits LTD in the hippocampus via regulation of GSK3β,” Neuron, vol. 53, no. 5, pp. 703–717, 2007. View at Publisher · View at Google Scholar · View at Scopus
  102. F. Cai, F. Wang, F. K. Lin et al., “Redox modulation of long-term potentiation in the hippocampus via regulation of the glycogen synthase kinase-3β pathway,” Free Radical Biology and Medicine, vol. 45, no. 7, pp. 964–970, 2008. View at Publisher · View at Google Scholar · View at Scopus
  103. R. A. Nichols, T. J. Chilcote, A. J. Czernik, and P. Greengard, “Synapsin I regulates glutamate release from rat brain synaptosomes,” Journal of Neurochemistry, vol. 58, no. 2, pp. 783–785, 1992. View at Google Scholar · View at Scopus
  104. P. Greengard, F. Valtorta, A. J. Czernik, and F. Benfenati, “Synaptic vesicle phosphoproteins and regulation of synaptic function,” Science, vol. 259, no. 5096, pp. 780–785, 1993. View at Google Scholar · View at Scopus
  105. V. A. Pieribone, O. Shupliakov, L. Brodin, S. Hilfiker-Rothenfluh, A. J. Czernik, and P. Greengard, “Distinct pools of synaptic vesicles in neurotransmitter release,” Nature, vol. 375, no. 6531, pp. 493–497, 1995. View at Google Scholar · View at Scopus
  106. S. Hilfiker, V. A. Pieribone, A. J. Czernik, H.-T. Kao, G. J. Augustine, and P. Greengard, “Synapsins as regulators of neurotransmitter release,” Philosophical Transactions of the Royal Society B, vol. 354, no. 1381, pp. 269–279, 1999. View at Google Scholar
  107. P. Chi, P. Greengard, and T. A. Ryan, “Synapsin dispersion and reclustering during synaptic activity,” Nature Neuroscience, vol. 4, no. 12, pp. 1187–1193, 2001. View at Publisher · View at Google Scholar · View at Scopus
  108. O. Bloom, E. Evergren, N. Tomilin et al., “Colocalization of synapsin and actin during synaptic vesicle recycling,” Journal of Cell Biology, vol. 161, no. 4, pp. 737–747, 2003. View at Publisher · View at Google Scholar · View at Scopus
  109. R. H. Melloni Jr., L. M. Hemmendinger, J. E. Hamos, and L. J. DeGennaro, “Synapsin I gene expression in the adult rat brain with comparative analysis of mRNA and protein in the hippocampus,” Journal of Comparative Neurology, vol. 327, no. 4, pp. 507–520, 1993. View at Publisher · View at Google Scholar · View at Scopus
  110. K. Sato, K. Morimoto, S. Suemaru, T. Sato, and N. Yamada, “Increased synapsin I immunoreactivity during long-term potentiation in rat hippocampus,” Brain Research, vol. 872, no. 1-2, pp. 219–222, 2000. View at Publisher · View at Google Scholar · View at Scopus
  111. Z. A. Bortolotto and G. L. Collingridge, “A role for protein kinase C in a form of metaplasticity that regulates the induction of long-term potentiation at CA1 synapses of the adult rat hippocampus,” European Journal of Neuroscience, vol. 12, no. 11, pp. 4055–4062, 2000. View at Publisher · View at Google Scholar · View at Scopus
  112. P. P. Sanna, M. Cammalleri, F. Berton et al., “Phosphatidylinositol 3-kinase is required for the expression but not for the induction or the maintenance of longterm potentiation in the hippocampal CA1 region,” Journal of Neuroscience, vol. 22, no. 9, pp. 3359–3365, 2002. View at Google Scholar
  113. P. Opazo, A. M. Watabe, S. G.N. Grant, and T. J. O'Dell, “Phosphatidylinositol 3-kinase regulates the induction of long-term potentiation through extracellular signal-related kinase-independent mechanisms,” Journal of Neuroscience, vol. 23, no. 9, pp. 3679–3688, 2003. View at Google Scholar
  114. F. Gardoni, A. Caputi, M. Cimino, L. Pastorino, F. Cattabeni, and M. Di Luca, “Calcium/calmodulin-dependent protein kinase II is associated with NR2A/B subunits of NMDA receptor in postsynaptic densities,” Journal of Neurochemistry, vol. 71, no. 4, pp. 1733–1741, 1998. View at Google Scholar · View at Scopus
  115. B. Teter and J. W. Ashford, “Neuroplasticity in Alzheimer's disease,” Journal of Neuroscience Research, vol. 70, no. 3, pp. 402–437, 2002. View at Publisher · View at Google Scholar · View at Scopus
  116. E. C. Beattie, R. C. Carroll, X. Yu et al., “Regulation of AMPA receptor endocytosis by a signaling mechanism shared with LTD,” Nature Neuroscience, vol. 3, no. 12, pp. 1291–1300, 2000. View at Publisher · View at Google Scholar · View at Scopus
  117. G. L. Collingridge, J. T. R. Isaac, and T. W. Yu, “Receptor trafficking and synaptic plasticity,” Nature Reviews Neuroscience, vol. 5, no. 12, pp. 952–962, 2004. View at Publisher · View at Google Scholar · View at Scopus
  118. J. Lisman, “A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 23, pp. 9574–9578, 1989. View at Publisher · View at Google Scholar · View at Scopus
  119. S. A. Purro, L. Ciani, M. Hoyos-Flight, E. Stamatakou, E. Siomou, and P. C. Salinas, “Wnt regulates axon behavior through changes in microtubule growth directionality: a new role for adenomatous polyposis coli,” Journal of Neuroscience, vol. 28, no. 34, pp. 8644–8654, 2008. View at Publisher · View at Google Scholar · View at Scopus
  120. F. Hernández, J. Borrell, C. Guaza, J. Avila, and J. J. Lucas, “Spatial learning deficit in transgenic mice that conditionally over-express GSK-3β in the brain but do not form tau filaments,” Journal of Neurochemistry, vol. 83, no. 6, pp. 1529–1533, 2002. View at Publisher · View at Google Scholar · View at Scopus
  121. S. Peineau, C. Bradley, C. Taghibiglou et al., “The role of GSK-3 in synaptic plasticity,” British Journal of Pharmacology, vol. 153, supplement 1, pp. S428–S437, 2008. View at Publisher · View at Google Scholar
  122. C. Hooper, R. Killick, and S. Lovestone, “The GSK3 hypothesis of Alzheimer's disease,” Journal of Neurochemistry, vol. 104, no. 6, pp. 1433–1439, 2008. View at Publisher · View at Google Scholar · View at Scopus
  123. A. Diaz, L. Mendieta, E. Zenteno, J. Guevara, and I. D. Limon, “The role of NOS in the impairment of spatial memory and damaged neurons in rats injected with amyloid beta 25–35 into the temporal cortex,” Pharmacology Biochemistry and Behavior, vol. 98, no. 1, pp. 67–75, 2011. View at Publisher · View at Google Scholar
  124. A. Sydow, A. Van Der Jeugd, F. Zheng et al., “Tau-induced defects in synaptic plasticity, learning, and memory are reversible in transgenic mice after switching off the toxic tau mutant,” Journal of Neuroscience, vol. 31, no. 7, pp. 2511–2525, 2011. View at Publisher · View at Google Scholar
  125. X. Sun, S. Sato, O. Murayama et al., “Lithium inhibits amyloid secretion in COS7 cells transfected with amyloid precursor protein C100,” Neuroscience Letters, vol. 321, no. 1-2, pp. 61–64, 2002. View at Publisher · View at Google Scholar · View at Scopus
  126. C. J. Phiel, C. A. Wilson, V. M. Y. Lee, and P. S. Klein, “GSK-3α regulates production of Alzheimer's disease amyloid-β peptides,” Nature, vol. 423, no. 6938, pp. 435–439, 2003. View at Publisher · View at Google Scholar · View at Scopus
  127. K. Iqbal and I. Grundke-Iqbal, “Discoveries of Tau, abnormally hyperphosphorylated tau and others of neurofibrillary degeneration: a personal historical perspective,” Journal of Alzheimer's Disease, vol. 9, no. 3, pp. 219–242, 2006. View at Google Scholar · View at Scopus
  128. K. Ishiguro, A. Shiratsuchi, S. Sato et al., “Glycogen synthase kinase 3β is identical to tau protein kinase I generating several epitopes of paired helical filaments,” FEBS Letters, vol. 325, no. 3, pp. 167–172, 1993. View at Publisher · View at Google Scholar · View at Scopus
  129. J. J. Pei, T. Tanaka, Y. C. Tung, E. Braak, K. Iqbal, and I. Grundke-Iqbal, “Distribution, levels, and activity of glycogen synthase kinase-3 in the Alzheimer disease brain,” Journal of Neuropathology and Experimental Neurology, vol. 56, no. 1, pp. 70–78, 1997. View at Google Scholar · View at Scopus
  130. D. P. Hanger, B. H. Anderton, and W. Noble, “Tau phosphorylation: the therapeutic challenge for neurodegenerative disease,” Trends in Molecular Medicine, vol. 15, no. 3, pp. 112–119, 2009. View at Publisher · View at Google Scholar · View at Scopus
  131. A. Leroy, I. Landrieu, and I. Huvent, “Spectroscopic studies of GSK3β phosphorylation of the neuronal Tau protein and its interaction with the N-terminal domain of apolipoprotein E,” Journal of Biological Chemistry, vol. 285, no. 43, pp. 33435–33444, 2010. View at Publisher · View at Google Scholar
  132. J. J. Lucas, F. Hernández, P. Gómez-Ramos, M. A. Morán, R. Hen, and J. Avila, “Decreased nuclear β-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3β conditional transgenic mice,” EMBO Journal, vol. 20, no. 1-2, pp. 27–39, 2001. View at Publisher · View at Google Scholar · View at Scopus
  133. T. Engel, P. Goñi-Oliver, J. J. Lucas, J. Avila, and F. Hernández, “Chronic lithium administration to FTDP-17 tau and GSK-3β overexpressing mice prevents tau hyperphosphorylation and neurofibrillary tangle formation, but pre-formed neurofibrillary tangles do not revert,” Journal of Neurochemistry, vol. 99, no. 6, pp. 1445–1455, 2006. View at Publisher · View at Google Scholar · View at Scopus
  134. G. R. Jackson, M. Wiedau-Pazos, T. K. Sang et al., “Human wild-type tau interacts with wingless pathway components and produces neurofibrillary pathology in Drosophila,” Neuron, vol. 34, no. 4, pp. 509–519, 2002. View at Publisher · View at Google Scholar · View at Scopus
  135. M. Pérez, F. Hernández, F. Lim, J. Díaz-Nido, and J. Avila, “Chronic lithium treatment decreases mutant tau protein aggregation in a transgenic mouse model,” Journal of Alzheimer's Disease, vol. 5, no. 4, pp. 301–308, 2003. View at Google Scholar · View at Scopus
  136. W. Noble, E. Planel, C. Zehr et al., “Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 19, pp. 6990–6995, 2005. View at Publisher · View at Google Scholar · View at Scopus
  137. L. Serenó, M. Coma, M. Rodríguez et al., “A novel GSK-3β inhibitor reduces Alzheimer's pathology and rescues neuronal loss in vivo,” Neurobiology of Disease, vol. 35, no. 3, pp. 359–367, 2009. View at Publisher · View at Google Scholar · View at Scopus
  138. H. Yamaguchi, K. Ishiguro, T. Uchida, A. Takashima, C. A. Lemere, and K. Imahori, “Preferential labeling of Alzheimer neurofibrillary tangles with antisera for tau protein kinase (TPK) I/glycogen synthase kinase-3β and cyclin-dependent kinase 5, a component of TPK II,” Acta Neuropathologica, vol. 92, no. 3, pp. 232–241, 1996. View at Publisher · View at Google Scholar · View at Scopus
  139. J. J. Pei, E. Braak, H. Braak et al., “Distribution of active glycogen synthase kinase 3β (GSK-3β) in brains staged for Alzheimer disease neurofibrillary changes,” Journal of Neuropathology and Experimental Neurology, vol. 58, no. 9, pp. 1010–1019, 1999. View at Google Scholar · View at Scopus
  140. I. Mateo, J. Infante, J. Llorca, E. Rodríguez, J. Berciano, and O. Combarros, “Association between glycogen synthase kinase-3β genetic polymorphism and late-onset Alzheimer's disease,” Dementia and Geriatric Cognitive Disorders, vol. 21, no. 4, pp. 228–232, 2006. View at Publisher · View at Google Scholar
  141. B. A. J. Schaffer, L. Bertram, B. L. Miller et al., “Association of GSK3B with Alzheimer disease and frontotemporal dementia,” Archives of Neurology, vol. 65, no. 10, pp. 1368–1374, 2008. View at Publisher · View at Google Scholar · View at Scopus
  142. Y. Su, J. Ryder, B. Li et al., “Lithium, a common drug for bipolar disorder treatment, regulates amyloid-β precursor protein processing,” Biochemistry, vol. 43, no. 22, pp. 6899–6908, 2004. View at Publisher · View at Google Scholar · View at Scopus
  143. A. Takashima, K. Noguchi, G. Michel et al., “Exposure of rat hippocampal neurons to amyloid β peptide (25-35) induces the inactivation of phosphatidyl inositol-3 kinase and the activation of tau protein kinase I/glycogen synthase kinase-3β,” Neuroscience Letters, vol. 203, no. 1, pp. 33–36, 1996. View at Publisher · View at Google Scholar · View at Scopus
  144. M. Townsend, T. Mehta, and D. J. Selkoe, “Soluble Aβ inhibits specific signal transduction cascades common to the insulin receptor pathway,” Journal of Biological Chemistry, vol. 282, no. 46, pp. 33305–33312, 2007. View at Publisher · View at Google Scholar · View at Scopus
  145. M. H. Magdesian, M. M. V. F. Carvalho, F. A. Mendes et al., “Amyloid-β binds to the extracellular cysteine-rich domain of frizzled and inhibits Wnt/β-catenin signaling,” Journal of Biological Chemistry, vol. 283, no. 14, pp. 9359–9368, 2008. View at Publisher · View at Google Scholar · View at Scopus
  146. G. V. De Ferrari, A. Papassotiropoulos, T. Biechele et al., “Common genetic variation within the low-density lipoprotein receptor-related protein 6 and late-onset Alzheimer's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 22, pp. 9434–9439, 2007. View at Publisher · View at Google Scholar · View at Scopus
  147. A. Caruso, M. Motolese, L. Iacovelli et al., “Inhibition of the canonical Wnt signaling pathway by apolipoprotein E4 in PC12 cells,” Journal of Neurochemistry, vol. 98, no. 2, pp. 364–371, 2006. View at Publisher · View at Google Scholar · View at Scopus
  148. W. J. Strittmatter, A. M. Saunders, D. Schmechel et al., “Apolipoprotein E: high-avidity binding to β-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 5, pp. 1977–1981, 1993. View at Google Scholar · View at Scopus
  149. A. Cedazo-Mínguez, B. O. Popescu, J. M. Blanco-Millán et al., “Apolipoprotein E and β-amyloid (1–42) regulation of glycogen synthase kinase-3β,” Journal of Neurochemistry, vol. 87, no. 5, pp. 1152–1164, 2003. View at Publisher · View at Google Scholar · View at Scopus
  150. A. Caricasole, A. Copani, F. Caraci et al., “Induction of Dickkopf-1, a negative modulator of the Wnt pathway, is associated with neuronal degeneration in Alzheimer's brain,” Journal of Neuroscience, vol. 24, no. 26, pp. 6021–6027, 2004. View at Publisher · View at Google Scholar · View at Scopus
  151. O. Mercado-Gómez, K. Hernández-Fonseca, A. Villavicencio-Queijeiro, L. Massieu, J. Chimal-Monroy, and C. Arias, “Inhibition of Wnt and PI3K signaling modulates GSK-3β activity and induces morphological changes in cortical neurons: role of tau phosphorylation,” Neurochemical Research, vol. 33, no. 8, pp. 1599–1609, 2008. View at Publisher · View at Google Scholar · View at Scopus