Table of Contents Author Guidelines Submit a Manuscript
International Journal of Alzheimer’s Disease
Volume 2011 (2011), Article ID 370345, 5 pages
http://dx.doi.org/10.4061/2011/370345
Review Article

Copper Modulation as a Therapy for Alzheimer's Disease?

1Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
2Oxidation Biology Laboratory, The Mental Health Research Institute, Parkville, Vic 3052, Australia
3Synaptic Neurobiology Laboratory, The Mental Health Research Institute, Parkville, Vic 3052, Australia
4Department of Pathology, The University of Melbourne, Parkville, Vic 3010, Australia

Received 24 May 2011; Accepted 30 June 2011

Academic Editor: Rosanna Squitti

Copyright © 2011 Yasmina Manso et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Lannfelt, K. Blennow, H. Zetterberg et al., “Safety, efficacy, and biomarker findings of PBT2 in targeting Aß as a modifying therapy for Alzheimer's disease: a phase IIa, double-blind, randomised, placebo-controlled trial,” The Lancet Neurology, vol. 7, no. 9, pp. 779–786, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. N. G. Faux, C. W. Ritchie, A. Gunn et al., “PBT2 rapidly improves cognition in Alzheimer's disease: additional phase II analyses,” Journal of Alzheimer's Disease, vol. 20, no. 2, pp. 509–516, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. P. A. Adlard, R. A. Cherny, D. I. Finkelstein et al., “Rapid restoration of cognition in Alzheimer's transgenic mice with 8-hydroxy quinoline analogs is associated with decreased interstitial Aβ,” Neuron, vol. 59, no. 1, pp. 43–55, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. P. A. Adlard, L. Bica, A. R. White et al., “Metal ionophore treatment restores dendritic spine density and synaptic protein levels in a mouse model of Alzheimer's disease,” PLoS ONE, vol. 6, no. 3, Article ID e17669, 2011. View at Publisher · View at Google Scholar
  5. T. A. Bayer, S. Schäfer, A. Simons et al., “Dietary Cu stabilizes brain superoxide dismutase 1 activity and reduces amyloid Aβ production in APP23 transgenic mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 2, pp. 14187–14192, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. P. A. Adlard, V. M. Perreau, V. Pop, and C. W. Cotman, “Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer's disease,” Journal of Neuroscience, vol. 25, no. 17, pp. 4217–4221, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. P. A. Adlard, J. M. Parncutt, D. I. Finkelstein, and A. I. Bush, “Cognitive loss in zinc transporter-3 knock-out mice: a phenocopy for the synaptic and memory deficits of Alzheimer's disease?” Journal of Neuroscience, vol. 30, no. 5, pp. 1631–1636, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Stenh, H. Englund, A. Lord et al., “Amyloid-β oligomers are inefficiently measured by enzyme-linked immunosorbent assay,” Annals of Neurology, vol. 58, no. 1, pp. 147–150, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. D. L. Sparks, R. Friedland, S. Petanceska et al., “Trace copper levels in the drinking water, but not zinc or aluminum influence CNS Alzheimer-like pathology,” Journal of Nutrition, Health and Aging, vol. 10, no. 4, pp. 247–254, 2006. View at Google Scholar · View at Scopus
  10. M. C. Morris, D. A. Evans, C. C. Tangney et al., “Dietary copper and high saturated and trans fat intakes associated with cognitive decline,” Archives of Neurology, vol. 63, no. 8, pp. 1085–1088, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. F. Serrano and E. Klann, “Reactive oxygen species and synaptic plasticity in the aging hippocampus,” Ageing Research Reviews, vol. 3, no. 4, pp. 431–443, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. D. L. Sparks and B. G. Schreurs, “Trace amounts of copper in water induce β-amyloid plaques and learning deficits in a rabbit model of Alzheimer's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 19, pp. 11065–11069, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Lu, D. M. Wu, Y. L. Zheng et al., “Trace amounts of copper exacerbate beta amyloid-induced neurotoxicity in the cholesterol-fed mice through TNF-mediated inflammatory pathway,” Brain, Behavior, and Immunity, vol. 23, no. 2, pp. 193–203, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. A. L. Phinney, B. Drisaldi, S. D. Schmidt et al., “In vivo reduction of amyloid-β by a mutant copper transporter,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 2, pp. 14193–14198, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. T. M. Malm, H. Iivonen, G. Goldsteins et al., “Pyrrolidine dithiocarbamate activates Akt and improves spatial learning in APP/PS1 mice without affecting β-amyloid burden,” Journal of Neuroscience, vol. 27, no. 14, pp. 3712–3721, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. P. J. Crouch, W. H. Lin, P. A. Adlard et al., “Increasing Cu bioavailability inhibits Aβ oligomers and tau phosphorylation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 2, pp. 381–386, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Squitti, P. M. Rossini, E. Cassetta et al., “D-penicillamine reduces serum oxidative stress in Alzheimer's disease patients,” European Journal of Clinical Investigation, vol. 32, no. 1, pp. 51–59, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Kessler, F. G. Pajonk, D. Bach et al., “Effect of copper intake on CSF parameters in patients with mild Alzheimer's disease: a pilot phase 2 clinical trial,” Journal of Neural Transmission, vol. 115, no. 12, pp. 1651–1659, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Kessler, T. A. Bayer, D. Bach et al., “Intake of copper has no effect on cognition in patients with mild Alzheimer's disease: a pilot phase 2 clinical trial,” Journal of Neural Transmission, vol. 115, no. 8, pp. 1181–1187, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Bica, P. J. Crouch, R. Cappai, and A. R. White, “Metallo-complex activation of neuroprotective signalling pathways as a therapeutic treatment for Alzheimer's disease,” Molecular BioSystems, vol. 5, no. 2, pp. 134–142, 2009. View at Publisher · View at Google Scholar · View at Scopus