Table of Contents Author Guidelines Submit a Manuscript
International Journal of Alzheimer’s Disease
Volume 2011, Article ID 546871, 11 pages
http://dx.doi.org/10.4061/2011/546871
Research Article

Joint Assessment of Structural, Perfusion, and Diffusion MRI in Alzheimer's Disease and Frontotemporal Dementia

1Center for Imaging of Neurodegenerative Diseases, Department of Veterans Affairs San Francisco VA, Medical Center, 4150, Clement Street, San Francisco, CA 94121, USA
2Department of Radiology, University of California, San Francisco, CA 94143, USA
3Department of Neurology, University of California, San Francisco, CA 94143, USA

Received 29 November 2010; Accepted 26 April 2011

Academic Editor: Katsuya Urakami

Copyright © 2011 Yu Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. S. Ryan and N. C. Fox, “Imaging biomarkers in Alzheimer's disease,” Annals of the New York Academy of Sciences, vol. 1180, pp. 20–27, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. J. C. Baron, G. Chetelat, B. Desgranges et al., “In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer's disease,” NeuroImage, vol. 14, no. 2, pp. 298–309, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Ishii, H. Sasaki, A. K. Kono, N. Miyamoto, T. Fukuda, and E. Mori, “Comparison of gray matter and metabolic reduction in mild Alzheimer's disease using FDG-PET and voxel-based morphometric MR studies,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 32, no. 8, pp. 959–963, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Bartenstein, S. Minoshima, C. Hirsch et al., “Quantitative assessment of cerebral blood flow in patients with Alzheimer's disease by SPECT,” Journal of Nuclear Medicine, vol. 38, no. 7, pp. 1095–1101, 1997. View at Google Scholar · View at Scopus
  5. N. A. Johnson, G. H. Jahng, M. W. Weiner et al., “Pattern of cerebral hypoperfusion in Alzheimer disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: initial experience,” Radiology, vol. 234, no. 3, pp. 851–859, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. D. C. Alsop, J. A. Detre, and M. Grossman, “Assessment of cerebral blood flow in Alzheimer's disease by spin-labeled magnetic resonance imaging,” Annals of Neurology, vol. 47, no. 1, pp. 93–100, 2000. View at Google Scholar · View at Scopus
  7. E. J. Kim, S. S. Cho, Y. Jeong et al., “Glucose metabolism in early onset versus late onset Alzheimer's disease: an SPM analysis of 120 patients,” Brain, vol. 128, no. 8, pp. 1790–1801, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Xie, J. X. Xiao, G. L. Gong et al., “Voxel-based detection of white matter abnormalities in mild Alzheimer disease,” Neurology, vol. 66, no. 12, pp. 1845–1849, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. O. Naggara, C. Oppenheim, D. Rieu et al., “Diffusion tensor imaging in early Alzheimer's disease,” Psychiatry Research—Neuroimaging, vol. 146, no. 3, pp. 243–249, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Stahl, O. Dietrich, S. J. Teipel, H. Hampel, M. F. Reiser, and S. O. Schoenberg, “White matter damage in Alzheimer disease and mild cognitive impairment: assessment with diffusion-tensor MR imaging and parallel imaging techniques,” Radiology, vol. 243, no. 2, pp. 483–492, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. S. J. Teipel, R. Stahl, O. Dietrich et al., “Multivariate network analysis of fiber tract integrity in Alzheimer's disease,” NeuroImage, vol. 34, no. 3, pp. 985–995, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Huang, R. P. Friedland, and A. P. Auchus, “Diffusion tensor imaging of normal-appearing white matter in mild cognitive impairment and early Alzheimer disease: preliminary evidence of axonal degeneration in the temporal lobe,” American Journal of Neuroradiology, vol. 28, no. 10, pp. 1943–1948, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Wang, F. C. Goldstein, E. Veledar et al., “Alterations in cortical thickness and white matter integrity in mild cognitive impairment measured by whole-brain cortical thickness mapping and diffusion tensor imaging,” American Journal of Neuroradiology, vol. 30, no. 5, pp. 893–899, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. H. J. Rosen, M. L. Gorno-Tempini, W. P. Goldman et al., “Patterns of brain atrophy in frontotemporal dementia and semantic dementia,” Neurology, vol. 58, no. 2, pp. 198–208, 2002. View at Google Scholar · View at Scopus
  15. M. Grossman, C. McMillan, P. Moore et al., “What's in a name: voxel-based morphometric analyses of MRI and naming difficulty in Alzheimer's disease, frontotemporal dementia and corticobasal degeneration,” Brain, vol. 127, no. 3, pp. 628–649, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. A. T. Du, G. H. Jahng, S. Hayasaka et al., “Hypoperfusion in frontotemporal dementia and Alzheimer disease by arterial spin labeling MRI,” Neurology, vol. 67, no. 7, pp. 1215–1220, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Diehl, T. Grimmer, A. Drzezga, M. Riemenschneider, H. Forstl, and A. Kurz, “Cerebral metabolic patterns at early stages of frontotemporal dementia and semantic dementia: A PET study,” Neurobiology of Aging, vol. 25, no. 8, pp. 1051–1056, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Grimmer, J. Diehl, A. Drzezga, H. Förstl, and A. Kurz, “Region-specific decline of cerebral glucose metabolism in patients with frontotemporal dementia: a prospective F-FDG-PET study,” Dementia and Geriatric Cognitive Disorders, vol. 18, no. 1, pp. 32–36, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Ishii, S. Sakamoto, M. Sasaki et al., “Cerebral glucose metabolism in patients with frontotemporal dementia,” Journal of Nuclear Medicine, vol. 39, no. 11, pp. 1875–1878, 1998. View at Google Scholar · View at Scopus
  20. Y. Jeong, S. S. Cho, J. M. Park et al., “18F-FDG PET findings in frontotemporal dementia: an SPM analysis of 29 patients,” Journal of Nuclear Medicine, vol. 46, no. 2, pp. 233–239, 2005. View at Google Scholar · View at Scopus
  21. V. A. Cardenas, A. L. Boxer, L. L. Chao et al., “Deformation-based morphometry reveals brain atrophy in frontotemporal dementia,” Archives of Neurology, vol. 64, no. 6, pp. 873–877, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. L. L. Chao, N. Schuff, E. M. Clevenger et al., “Patterns of white matter atrophy in frontotemporal lobar degeneration,” Archives of Neurology, vol. 64, no. 11, pp. 1619–1624, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. B. Borroni, S. M. Brambati, C. Agosti et al., “Evidence of white matter changes on diffusion tensor imaging in frontotemporal dementia,” Archives of Neurology, vol. 64, no. 2, pp. 246–251, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. E. S. Matsuo, R. W. Shin, M. L. Billingsley et al., “Biopsy-derived adult human brain tau is phosphorylated at many of the same sites as Alzheimer's disease paired helical filament tau,” Neuron, vol. 13, no. 4, pp. 989–1002, 1994. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Zhang, N. Schuff, A. T. Du et al., “White matter damage in frontotemporal dementia and Alzheimers disease measured by diffusion MRI,” Brain, vol. 132, no. 9, pp. 2579–2592, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. G. D. Rabinovici, W. W. Seeley, E. J. Kim et al., “Distinct MRI atrophy patterns in autopsy-proven Alzheimer's disease and frontotemporal lobar degeneration,” American Journal of Alzheimer's Disease and other Dementias, vol. 22, no. 6, pp. 474–488, 2007. View at Publisher · View at Google Scholar
  27. T. Fukui and A. Kertesz, “Volumetric study of lobar atrophy in Pick complex and Alzheimer's disease,” Journal of the Neurological Sciences, vol. 174, no. 2, pp. 111–121, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. A. R. Varma, W. Adams, J. J. Lloyd et al., “Diagnostic patterns of regional atrophy on MRI and regional cerebral blood flow change on SPECT in young onset patients with Alzheimer's disease, frontotemporal dementia and vascular dementia,” Acta Neurologica Scandinavica, vol. 105, no. 4, pp. 261–269, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Bocti, C. Rockel, P. Roy, F. Gao, and S. E. Black, “Topographical patterns of lobar atrophy in frontotemporal dementia and Alzheimer's disease,” Dementia and Geriatric Cognitive Disorders, vol. 21, no. 5-6, pp. 364–372, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Kanda, K. Ishii, T. Uemura et al., “Comparison of grey matter and metabolic reductions in frontotemporal dementia using FDG-PET and voxel-based morphometric MR studies,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 35, no. 12, pp. 2227–2234, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Tranfaglia, B. Palumbo, D. Siepi, H. Sinzinger, and L. Parnetti, “Semi-quantitative analysis of perfusion of Brodmann areas in the differential diagnosis of cognitive impairment in Alzheimer's disease, fronto-temporal dementia and mild cognitive impairment,” Hellenic Journal of Nuclear Medicine, vol. 12, no. 2, pp. 110–195, 2009. View at Google Scholar · View at Scopus
  32. A. Varrone, S. Pappata, C. Caraco et al., “Voxel-based comparison of rCBF SPET images in frontotemporal dementia and Alzheimer's disease highlights the involvement of different cortical networks,” European Journal of Nuclear Medicine, vol. 29, no. 11, pp. 1447–1454, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Luckhaus, M. Janner, M. Cohnen et al., “A novel MRI-biomarker candidate for Alzheimer's disease composed of regional brain volume and perfusion variables,” European Journal of Neurology, vol. 17, no. 12, pp. 1437–1444, 2010. View at Publisher · View at Google Scholar
  34. K. B. Walhovd, A. M. Fjell, I. Amlien et al., “Multimodal imaging in mild cognitive impairment: metabolism, morphometry and diffusion of the temporal-parietal memory network,” NeuroImage, vol. 45, no. 1, pp. 215–223, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. M. F. Folstein, S. E. Folstein, and P. R. McHugh, “'Mini mental state': a practical method for grading the cognitive state of patients for the clinician,” Journal of Psychiatric Research, vol. 12, no. 3, pp. 189–198, 1975. View at Publisher · View at Google Scholar · View at Scopus
  36. D. Neary, J. S. Snowden, L. Gustafson et al., “Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria,” Neurology, vol. 51, no. 6, pp. 1546–1554, 1998. View at Google Scholar · View at Scopus
  37. G. McKhann, D. Drachman, M. Folstein, R. Katzman, D. Price, and E. M. Stadlan, “Clinical diagnosis of Alzheimer's disease: report of the NINCDS- ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease,” Neurology, vol. 34, no. 7, pp. 939–944, 1984. View at Google Scholar
  38. J. C. Morris, “The Clinical Dementia Rating (CDR): current version and scoring rules,” Neurology, vol. 43, no. 11, pp. 2412–2414, 1993. View at Google Scholar · View at Scopus
  39. P. Scheltens, F. Barkhof, D. Leys et al., “A semiquantitative rating scale for the assessment of signal hyperintensities on magnetic resonance imaging,” Journal of the Neurological Sciences, vol. 114, no. 1, pp. 7–12, 1993. View at Publisher · View at Google Scholar · View at Scopus
  40. J. A. Detre, J. S. Leigh, D. S. Williams, and A. P. Koretsky, “Perfusion imaging,” Magnetic Resonance in Medicine, vol. 23, no. 1, pp. 37–45, 1992. View at Google Scholar · View at Scopus
  41. M. A. Griswold, P. M. Jakob, R. M. Heidemann et al., “Generalized autocalibrating partially parallel acquisitions (GRAPPA),” Magnetic Resonance in Medicine, vol. 47, no. 6, pp. 1202–1210, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Ashburner and K. J. Friston, “Voxel-based morphometry—the methods,” NeuroImage, vol. 11, no. 6 I, pp. 805–821, 2000. View at Publisher · View at Google Scholar · View at Scopus
  43. K. Van Leemput, F. Maes, D. Vandermeulen, A. Colchester, and P. Suetens, “Automated segmentation of multiple sclerosis lesions by model outlier detection,” IEEE Transactions on Medical Imaging, vol. 20, no. 8, pp. 677–688, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Wang, Y. Zhang, R. L. Wolf, A. C. Roc, D. C. Alsop, and J. A. Detre, “Amplitude-modulated continuous arterial spin-labeling 3.0-T perfusion MR imaging with a single coil: feasibility study,” Radiology, vol. 235, no. 1, pp. 218–228, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. Masutani, S. Aoki, O. Abe, N. Hayashi, and K. Otomo, “MR diffusion tensor imaging: recent advance and new techniques for diffusion tensor visualization,” European Journal of Radiology, vol. 46, no. 1, pp. 53–66, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. W. Zhan, Y. Zhang, S. G. Mueller et al., “Characterization of white matter degeneration in elderly subjects by magnetic resonance diffusion and FLAIR imaging correlation,” NeuroImage, vol. 47, supplement 2, pp. T58–T65, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Signorini, E. Paulesu, K. Friston et al., “Rapid assessment of regional cerebral metabolic abnormalities in single subjects with quantitative and nonquantitative [18F]FDG PET: a clinical validation of statistical parametric mapping,” NeuroImage, vol. 9, no. 1, pp. 63–80, 1999. View at Publisher · View at Google Scholar · View at Scopus
  48. G. M. McKhann, M. S. Albert, M. Grossman, B. Miller, D. Dickson, and J. Q. Trojanowski, “Clinical and pathological diagnosis of frontotemporal dementia: report of the work group on frontotemporal dementia and Pick's disease,” Archives of Neurology, vol. 58, no. 11, pp. 1803–1809, 2001. View at Google Scholar · View at Scopus
  49. J. Q. Trojanowski, K. Duff, H. Fillit et al., “New directions for frontotemporal dementia drug discovery,” Alzheimer's and Dementia, vol. 4, no. 2, pp. 89–93, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Broe, J. Kril, and G. M. Halliday, “Astrocytic degeneration relates to the severity of disease in frontotemporal dementia,” Brain, vol. 127, no. 10, pp. 2214–2220, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. J. M. Powers, N. P. Byrne, M. Ito et al., “A novel leukoencephalopathy associated with tau deposits primarily in white matter glia,” Acta Neuropathologica, vol. 106, no. 2, pp. 181–187, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. E. Englund and A. Brun, “Frontal lobe degeneration of non-Alzheimer type IV: white matter changes,” Archives of Gerontology and Geriatrics, vol. 6, no. 3, pp. 235–243, 1987. View at Google Scholar · View at Scopus
  53. E. M. Larsson, E. Englund, M. Sjobeck, J. Latt, and S. Brockstedt, “MRI with diffusion tensor imaging post-mortem at 3.0 T in a patient with frontotemporal dementia,” Dementia and Geriatric Cognitive Disorders, vol. 17, no. 4, pp. 316–319, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. G. G. Kovacs, K. Majtenyi, S. Spina et al., “White matter tauopathy with globular glial inclusions: a distinct sporadic frontotemporal lobar segeneration,” Journal of Neuropathology and Experimental Neurology, vol. 67, no. 10, pp. 963–975, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. M. E. Calhoun, P. Burgermeister, A. L. Phinney et al., “Neuronal overexpression of mutant amyloid precursor protein results in prominent deposition of cerebrovascular amyloid,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 24, pp. 14088–14093, 1999. View at Publisher · View at Google Scholar · View at Scopus
  56. H. Braak and E. Braak, “Staging of Alzheimer's disease-related neurofibrillary changes,” Neurobiology of Aging, vol. 16, no. 3, pp. 271–278, 1995. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Bozzali, A. Falini, M. Franceschi et al., “White matter damage in Alzheimer's disease assessed in vivo using diffusion tensor magnetic resonance imaging,” Journal of Neurology Neurosurgery and Psychiatry, vol. 72, no. 6, pp. 742–746, 2002. View at Publisher · View at Google Scholar · View at Scopus
  58. H. Hanyu, H. Sakurai, T. Iwamoto, M. Takasaki, H. Shindo, and K. Abe, “Diffusion-weighted MR imaging of the hippocampus and temporal white matter in Alzheimer's disease,” Journal of the Neurological Sciences, vol. 156, no. 2, pp. 195–200, 1998. View at Publisher · View at Google Scholar · View at Scopus
  59. E. Englund, “Neuropathology of white matter changes in Alzheimer's disease and vascular dementia,” Dementia and Geriatric Cognitive Disorders, vol. 9, supplement 1, pp. 6–12, 1998. View at Google Scholar · View at Scopus
  60. C. M. Filley and B. K. Kleinschmidt-DeMasters, “Toxic leukoencephalopathy,” The New England Journal of Medicine, vol. 345, no. 6, pp. 425–432, 2001. View at Publisher · View at Google Scholar · View at Scopus
  61. A. R. Varma, R. Laitt, J. J. Lloyd et al., “Diagnostic value of high signal abnormalities on T2 weighted MRI in the differentiation of Alzheimer's, frontotemporal and vascular dementias,” Acta Neurologica Scandinavica, vol. 105, no. 5, pp. 355–364, 2002. View at Publisher · View at Google Scholar · View at Scopus
  62. W. W. Seeley, D. A. Carlin, J. M. Allman et al., “Early frontotemporal dementia targets neurons unique to apes and humans,” Annals of Neurology, vol. 60, no. 6, pp. 660–667, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. H. Kitagaki, E. Mori, S. Yamaji et al., “Frontotemporal dementia and Alzheimer disease: evaluation of cortical atrophy with automated hemispheric surface display generated with MR images,” Radiology, vol. 208, no. 2, pp. 431–439, 1998. View at Google Scholar · View at Scopus
  64. B. B. Avants, P. A. Cook, L. Ungar, J. C. Gee, and M. Grossman, “Dementia induces correlated reductions in white matter integrity and cortical thickness: a multivariate neuroimaging study with sparse canonical correlation analysis,” NeuroImage, vol. 50, no. 3, pp. 1004–1016, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. J. L. Whitwell, C. R. Jack Jr., V. S. Pankratz et al., “Rates of brain atrophy over time in autopsy-proven frontotemporal dementia and Alzheimer disease,” NeuroImage, vol. 39, no. 3, pp. 1034–1040, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. D. Chan, N. C. Fox, R. Jenkins, R. I. Scahill, W. R. Crum, and M. N. Rossor, “Rates of global and regional cerebral atrophy in AD and frontotemporal dementia,” Neurology, vol. 57, no. 10, pp. 1756–1763, 2001. View at Google Scholar · View at Scopus
  67. C. Davatzikos, S. M. Resnick, X. Wu, P. Parmpi, and C. M. Clark, “Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI,” NeuroImage, vol. 41, no. 4, pp. 1220–1227, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. C. Kersaitis, G. M. Halliday, and J. J. Kril, “Regional and cellular pathology in frontotemporal dementia: relationship to stage of disease in cases with and without Pick bodies,” Acta Neuropathologica, vol. 108, no. 6, pp. 515–523, 2004. View at Publisher · View at Google Scholar · View at Scopus
  69. S. Shimizu, Y. Zhang, J. Laxamana et al., “Concordance and discordance between brain perfusion and atrophy in frontotemporal dementia,” Brain Imaging and Behavior, vol. 4, no. 1, pp. 46–54, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. J. L. Whitwell, K. A. Josephs, M. N. Rossor et al., “Magnetic resonance imaging signatures of tissue pathology in frontotemporal dementia,” Archives of Neurology, vol. 62, no. 9, pp. 1402–1408, 2005. View at Publisher · View at Google Scholar · View at Scopus
  71. S. Takahashi, H. Yonezawa, J. Takahashi, M. Kudo, T. Inoue, and H. Tohgi, “Selective reduction of diffusion anisotropy in white matter of Alzheimer disease brains measured by 3.0 Tesla magnetic resonance imaging,” Neuroscience Letters, vol. 332, no. 1, pp. 45–48, 2002. View at Google Scholar
  72. A. Fellgiebel, M. J. Muller, P. Wille et al., “Color-coded diffusion-tensor-imaging of posterior cingulate fiber tracts in mild cognitive impairment,” Neurobiology of Aging, vol. 26, no. 8, pp. 1193–1198, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. D. H. Salat, D. S. Tuch, A. J. W. van der Kouwe et al., “White matter pathology isolates the hippocampal formation in Alzheimer's disease,” Neurobiology of Aging, vol. 31, no. 2, pp. 244–256, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. G. Bartzokis, P. H. Lu, and J. Mintz, “Human brain myelination and amyloid beta deposition in Alzheimer's disease,” Alzheimer's and Dementia, vol. 3, no. 2, pp. 122–125, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. K. A. Celone, V. D. Calhoun, B. C. Dickerson et al., “Alterations in memory networks in mild cognitive impairment and Alzheimer's disease: an independent component analysis,” Journal of Neuroscience, vol. 26, no. 40, pp. 10222–10231, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. K. J. Worsley, J. E. Taylor, F. Tomaiuolo, and J. Lerch, “Unified univariate and multivariate random field theory,” NeuroImage, vol. 23, supplement 1, pp. S189–S195, 2004. View at Publisher · View at Google Scholar · View at Scopus
  77. K. Young, A. T. Du, J. Kramer et al., “Patterns of structural complexity in Alzheimer's disease and frontotemporal dementia,” Human Brain Mapping, vol. 30, no. 5, pp. 1667–1677, 2009. View at Publisher · View at Google Scholar · View at Scopus