Table of Contents Author Guidelines Submit a Manuscript
International Journal of Alzheimer’s Disease
Volume 2011, Article ID 572495, 9 pages
http://dx.doi.org/10.4061/2011/572495
Review Article

Potential Peripheral Biomarkers for the Diagnosis of Alzheimer's Disease

Banner Sun Health Research Institute, Sun City, AZ 85351, USA

Received 10 January 2011; Revised 17 August 2011; Accepted 25 August 2011

Academic Editor: Holly Soares

Copyright © 2011 Seema Patel et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Blennow and H. Hampel, “CSF markers for incipient Alzheimer's disease,” The Lancet Neurology, vol. 2, no. 10, pp. 605–613, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. The Ronald and Nancy Reagan Research Institute of the Alzheimer's Association and The National Institute on Aging, “Consensus report of the Working Group on: molecular and biochemical markers of Alzheimer's disease,” Neurobiology of Aging, vol. 19, pp. 109–116, 1998. View at Google Scholar
  3. H. Hampel, R. Frank, K. Broich et al., “Biomarkers for alzheimer's disease: academic, industry and regulatory perspectives,” Nature Reviews Drug Discovery, vol. 9, no. 7, pp. 560–574, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. A. E. Roher, C. L. Esh, T. A. Kokjohn et al., “Amyloid beta peptides in human plasma and tissues and their significance for Alzheimer's disease,” Alzheimer's and Dementia, vol. 5, no. 1, pp. 18–29, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. F. Bermejo-Pareja, D. Antequera, T. Vargas, J. Molina, and E. Carro, “Saliva levels of Abeta1-42 as potential biomarker of Alzheimer's disease: a pilot study,” BMC Neurology, vol. 10, p. 108, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. P. F. Boston, K. Gopalkaje, L. Manning, L. Middleton, and M. Loxley, “Developing a simple laboratory test for Alzheimer's disease: measuring acetylcholinesterase in saliva—a pilot study,” International Journal of Geriatric Psychiatry, vol. 23, no. 4, pp. 439–440, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. R. Sayer, E. Law, P. J. Connelly, and K. C. Breen, “Association of a salivary acetylcholinesterase with Alzheimer's disease and response to cholinesterase inhibitors,” Clinical Biochemistry, vol. 37, no. 2, pp. 98–104, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Thambisetty and S. Lovestone, “Blood-based biomarkers of Alzheimers disease: challenging but feasible,” Biomarkers in Medicine, vol. 4, no. 1, pp. 65–79, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. J. N. Lukens, V. van Deerlin, C. M. Clark, S. X. Xie, and F. B. Johnson, “Comparisons of telomere lengths in peripheral blood and cerebellum in Alzheimer's disease,” Alzheimer's and Dementia, vol. 5, no. 6, pp. 463–469, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. J. Butcher, “Urine tests for Alzheimer's disease-are they fool's gold?” Lancet Neurology, vol. 6, no. 2, pp. 106–107, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. S. M. de La Monte and J. R. Wands, “The AD7c-NTP neuronal thread protein biomarker for detecting Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 3, no. 3, pp. 345–353, 2001. View at Google Scholar · View at Scopus
  12. J. J. Corneveaux, A. J. Myers, A. N. Allen et al., “Association of CR1, CLU and PICALM with Alzheimer's disease in a cohort of clinically characterized and neuropathologically verified individuals,” Human Molecular Genetics, vol. 19, no. 16, pp. 3295–3301, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. L. Jones, D. Harold, and J. Williams, “Genetic evidence for the involvement of lipid metabolism in Alzheimer's disease,” Biochimica et Biophysica Acta, vol. 1801, no. 8, pp. 754–761, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. L. Bertram, M. B. McQueen, K. Mullin, D. Blacker, and R. E. Tanzi, “Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database,” Nature Genetics, vol. 39, no. 1, pp. 17–23, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. E. H. Corder, A. M. Saunders, W. J. Strittmatter et al., “Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families,” Science, vol. 261, no. 5123, pp. 921–923, 1993. View at Google Scholar · View at Scopus
  16. G. Utermann, U. Langenbeck, U. Beisiegel, and W. Weber, “Genetics of the apolipoprotein E system in man,” American Journal of Human Genetics, vol. 32, no. 3, pp. 339–347, 1980. View at Google Scholar · View at Scopus
  17. A. M. Saunders, “Apolipoprotein E and Alzheimer disease: an update on genetic and functional analyses,” Journal of Neuropathology and Experimental Neurology, vol. 59, no. 9, pp. 751–758, 2000. View at Google Scholar · View at Scopus
  18. F. Song, A. Poljak, G. A. Smythe, and P. Sachdev, “Plasma biomarkers for mild cognitive impairment and Alzheimer's disease,” Brain Research Reviews, vol. 61, no. 2, pp. 69–80, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. J. V. Sorli, D. Corella, F. Frances et al., “The effect of APOE polymorphism on HDL-C concentrations depends on the cholesterol ester transfer protein gene variation in a Southern European population,” Clinica Chimica, vol. 336, pp. 196–203, 2006. View at Google Scholar
  20. D. J. Berlau, M. M. Corrada, E. Head, and C. H. Kawas, “ApoE ε2 is associated with intact cognition but increased Alzheimer pathology in the oldest old,” Neurology, vol. 72, no. 9, pp. 829–834, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. A. M. Kulminski, S. V. Ukraintseva, K. G. Arbeev et al., “Health-protective and adverse effects of the apolipoprotein E ε2 allele in older men,” Journal of the American Geriatrics Society, vol. 56, no. 3, pp. 478–483, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. M. Z. Kounnas, R. D. Moir, G. W. Rebeck et al., “LDL receptor-related protein, a multifunctional apoE receptor, binds secreted β-amyloid precursor protein and mediates its degradation,” Cell, vol. 82, no. 2, pp. 331–340, 1995. View at Google Scholar · View at Scopus
  23. M. Miyata and J. D. Smith, “Apolipoprotein E allele-specific antioxidant activity and effects on cytotoxicity by oxidative insults and β-amyloid peptides,” Nature Genetics, vol. 14, no. 1, pp. 55–61, 1996. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. R. Mahley, K. Weisgraber, and Y. Huang, “Apolipoprotein E4: a causative factor and therapeutic target in neuropathology, including Alzheimer's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 15, pp. 5644–5651, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. E. M. Reiman, J. A. Webster, A. J. Myers et al., “GAB2 alleles modify Alzheimer's risk in APOE ε4 carriers,” Neuron, vol. 54, no. 5, pp. 713–720, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. W. S. Liang, K. Chen, W. Lee et al., “Association between GAB2 haplotype and higher glucose metabolism in Alzheimer's disease-affected brain regions in cognitively normal APOEε4 carriers,” NeuroImage, vol. 54, no. 3, pp. 1896–1902, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. C. E. Yu, H. Seltman, E. R. Peskind et al., “Comprehensive analysis of APOE and selected proximate markers for late-onset Alzheimer's disease: patterns of linkage disequilibrium and disease/marker association,” Genomics, vol. 89, no. 6, pp. 655–665, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. A. D. Roses, M. W. Lutz, H. Amrine-Madsen et al., “A TOMM40 variable-length polymorphism predicts the age of late-onset Alzheimer's disease,” Pharmacogenomics Journal, vol. 10, no. 5, pp. 375–384, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. I. Grossman, M. W. Lutz, D. G. Crenshaw, A. M. Saunders, D. K. Burns, and A. D. Roses, “Alzheimer's disease: diagnostics, prognostics and the road to prevention,” The EPMA Journal, vol. 1, pp. 293–303, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. R. Abraham, V. Moskvina, R. Sims et al., “A genome-wide association study for late-onset Alzheimer's disease using DNA pooling,” BMC Medical Genomics, vol. 1, p. 44, 2008. View at Google Scholar
  31. S. Ray, M. Britschgi, C. Herbert et al., “Classification and prediction of clinical Alzheimer's diagnosis based on plasma signaling proteins,” Nature Medicine, vol. 13, no. 11, pp. 1359–1362, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. S. Bhutra, “Proteomics of Alzheimer’s Disease,” http://biochem118.stanford.edu/Projects/2008%20Autumn/Steven.pdf.
  33. N. R. Graff-Radford, J. E. Crook, J. Lucas et al., “Association of low plasma Aβ42/Aβ40 ratios with increased imminent risk for mild cognitive impairment and Alzheimer disease,” Archives of Neurology, vol. 64, no. 3, pp. 354–362, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. N. Schupf, M. X. Tang, H. Fukuyama et al., “Peripheral Aβ subspecies as risk biomarkers of Alzheimer's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 37, pp. 14052–14057, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. M. F. Locascio, H. Fukumoto, L. Yap et al., “Plasma amyloid β-protein and C-reactive protein in relation to the rate of progression of Alzheimer disease,” Archives of Neurology, vol. 65, no. 6, pp. 776–785, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. M. van Oijen, A. Hofman, H. D. Soares, P. J. Koudstaal, and M. M. Breteler, “Plasma Aβ1-40 and Aβ1-42 and the risk of dementia: a prospective case-cohort study,” Lancet Neurology, vol. 5, no. 8, pp. 655–660, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. A. Hye, S. Lynham, M. Thambisetty et al., “Proteome-based plasma biomarkers for Alzheimer's disease,” Brain, vol. 129, no. 11, pp. 3042–3050, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. O. Hansson, H. Zetterberg, P. Buchhave, E. Londos, K. Blennow, and L. Minthon, “Association between CSF biomarkers and incipient Alzheimer's disease in patients with mild cognitive impairment: a follow-up study,” Lancet Neurology, vol. 5, no. 3, pp. 228–234, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. F. Moraga and S. Janciauskiene, “Activation of primary human monocytes by the oxidized form of α1- antitrypsin,” Journal of Biological Chemistry, vol. 275, no. 11, pp. 7693–7700, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Padmanabhan, M. Levy, D. W. Dickson, and H. Potter, “α1-antichymotrypsin, an inflammatory protein overexpressed in Alzheimer's disease brain, induces tau phosphorylation in neurons,” Brain, vol. 129, no. 11, pp. 3020–3034, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. H. D. Soares, Y. Chen, M. Sabbagh, A. Rohrer, E. Schrijvers, and M. Breteler, “Identifying early markers of alzheimer's disease using quantitative multiplex proteomic immunoassay panels,” Annals of the New York Academy of Sciences, vol. 1180, pp. 56–67, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. K. D. Siegmund, C. M. Connor, M. Campan et al., “DNA methylation in the human cerebral cortex is dynamically regulated throughout the life span and involves differentiated neurons,” PLoS ONE, vol. 2, no. 9, article e895, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. S. C. Wang, B. Oeize, and A. Schumacher, “Age-specific epigenetic drift in late-onset Alzheimer's disease,” PLoS ONE, vol. 3, no. 7, Article ID e2698, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. R. Kaddurah-Daouk, S. Rozen, W. Matson et al., “Metabolomic changes in autopsy-confirmed Alzheimer's disease,” Alzheimer's and Dementia, vol. 7, no. 3, pp. 309–317, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus