Table of Contents Author Guidelines Submit a Manuscript
International Journal of Alzheimer’s Disease
Volume 2012, Article ID 276803, 4 pages
http://dx.doi.org/10.1155/2012/276803
Review Article

Glycogen Synthase Kinase 3: A Point of Integration in Alzheimer's Disease and a Therapeutic Target?

1Department of Psychiatry, Douglas Hospital Research Center, McGill University, Montreal, QC, Canada H4H 1R3
2UTSA Neurosciences Institute and Department of Biology, College of Sciences, The University of Texas at San Antonio, San Antonio, TX, USA
3Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
4Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
5Faculty of Medicine, Institute of Physiology, University of Coimbra, Coimbra, Portugal

Received 7 February 2012; Revised 20 April 2012; Accepted 3 May 2012

Academic Editor: Francesco Panza

Copyright © 2012 Siddhartha Mondragón-Rodríguez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Wu and W. Pan, “GSK3: a multifaceted kinase in Wnt signaling,” Trends in Biochemical Sciences, vol. 35, no. 3, pp. 161–168, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Metcalfe and M. Bienz, “Inhibition of GSK3 by Wnt signalling—two contrasting models,” Journal of Cell Science, vol. 124, no. 21, pp. 3537–3544, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. V. F. Taelman, R. Dobrowolski, J. L. Plouhinec et al., “Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes,” Cell, vol. 143, no. 7, pp. 1136–1148, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Papkoff and M. Aikawa, “WNT-1 and HGF regulate GSK3β activity and β-catenin signaling in mammary epithelial cells,” Biochemical and Biophysical Research Communications, vol. 247, no. 3, pp. 851–858, 1998. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Saito, J. R. Vandenheede, and P. Cohen, “The mechanism by which epidermal growth factor inhibits glycogen synthase kinase 3 in A431 cells,” Biochemical Journal, vol. 303, no. 1, pp. 27–31, 1994. View at Google Scholar · View at Scopus
  6. D. A. E. Cross, D. R. Alessi, J. R. Vandenheede, H. E. McDowell, H. S. Hundal, and P. Cohen, “The inhibition of glycogen synthase kinase-3 by insulin or insulin-like growth factor 1 in the rat skeletal muscle cell line L6 is blocked by wortmannin, but not by rapamycin: evidence that wortmannin blocks activation of the mitogen-activated protein kinase pathway in L6 cells between Ras and Raf,” Biochemical Journal, vol. 303, no. 1, pp. 21–26, 1994. View at Google Scholar · View at Scopus
  7. C. Sutherland, I. A. Leighton, and P. Cohen, “Inactivation of glycogen synthase kinase-3β by phosphorylation: new kinase connections in insulin and growth-factor signalling,” Biochemical Journal, vol. 296, no. 1, pp. 15–19, 1993. View at Google Scholar · View at Scopus
  8. V. Stambolic and J. R. Woodgett, “Mitogen inactivation of glycogen synthase kinase-3β in intact cells via serine 9 phosphorylation,” Biochemical Journal, vol. 303, no. 3, pp. 701–704, 1994. View at Google Scholar · View at Scopus
  9. P. A. Lochhead, R. Kinstrie, G. Sibbet, T. Rawjee, N. Morrice, and V. Cleghone, “A chaperone-dependent GSK3β transitional intermediate mediates activation-loop autophosphorylation,” Molecular Cell, vol. 24, no. 4, pp. 627–633, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. T. M. Thornton, G. Pedraza-Alva, B. Deng et al., “Phosphorylation by p38 MAPK as an alternative pathway for GSK3β inactivation,” Science, vol. 320, no. 5876, pp. 667–670, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Wu, H. Huang, J. G. Abreu, and X. He, “Inhibition of GSK3 phosphorylation of β-catenin via phosphorylated PPPSPXS motifs of Wnt coreceptor LRP6,” PLoS ONE, vol. 4, no. 3, Article ID e4926, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. K. M. Cadigan and Y. I. Liu, “Wnt signaling: complexity at the surface,” Journal of Cell Science, vol. 119, no. 3, pp. 395–402, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Frame, P. Cohen, and R. M. Biondi, “A common phosphate binding site explains the unique substrate specificity of GSK3 and its inactivation by phosphorylation,” Molecular Cell, vol. 7, no. 6, pp. 1321–1327, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. J. R. Woodgett, “Molecular cloning and expression of glycogen synthase kinase-3/factor A,” The EMBO Journal, vol. 9, no. 8, pp. 2431–2438, 1990. View at Google Scholar · View at Scopus
  15. F. Mukai, K. Ishiguro, Y. Sano, and S. C. Fujita, “Aternative splicing isoform of tau protein kinase I/glycogen synthase kinase 3β,” Journal of Neurochemistry, vol. 81, no. 5, pp. 1073–1083, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Al-Mulla, M. S. Bitar, M. Al-Maghrebi et al., “Raf kinase inhibitor protein RKIP enhances signaling by glycogen synthase kinase-3β,” Cancer Research, vol. 71, no. 4, pp. 1334–1343, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. C. A. Grimes and R. S. Jope, “The multifaceted roles of glycogen synthase kinase 3β in cellular signaling,” Progress in Neurobiology, vol. 65, no. 4, pp. 391–426, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. M. P. M. Soutar, W. Y. Kim, R. Williamson et al., “Evidence that glycogen synthase kinase-3 isoforms have distinct substrate preference in the brain,” Journal of Neurochemistry, vol. 115, no. 4, pp. 974–983, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. R. S. Jope and M. S. Roh, “Glycogen synthase kinase-3 (GSK3) in psychiatric disease and therapeutic interventions,” Current Drug Targets, vol. 7, no. 11, pp. 1421–1434, 2006. View at Google Scholar · View at Scopus
  20. K. Leroy, A. Boutajangout, M. Authelet, J. R. Woodgett, B. H. Anderton, and J. P. Brion, “The active form of glycogen synthase kinase-3β is associated with granulovacuolar degeneration in neurons in Alzheimers's disease,” Acta Neuropathologica, vol. 103, no. 2, pp. 91–99, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. G. V. W. Johnson and J. A. Hartigan, “Tau protein in normal and Alzheimer's disease brain: an update,” Journal of Alzheimer's Disease, vol. 1, no. 4-5, pp. 329–351, 1999. View at Google Scholar · View at Scopus
  22. G. Farias, A. Cornejo, J. Jiménez, L. Guzmán, and R. B. Maccioni, “Mechanisms of tau self-aggregation and neurotoxicity,” Current Alzheimer Research, vol. 8, no. 6, pp. 608–614, 2011. View at Google Scholar
  23. G. V. W. Johnson and W. H. Stoothoff, “Tau phosphorylation in neuronal cell function and dysfunction,” Journal of Cell Science, vol. 117, no. 24, pp. 5721–5729, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. D. P. Hanger, B. H. Anderton, and W. Noble, “Tau phosphorylation: the therapeutic challenge for neurodegenerative disease,” Trends in Molecular Medicine, vol. 15, no. 3, pp. 112–119, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. F. Liu, B. Li, E. J. Tung, I. Grundke-Iqbal, K. Iqbal, and C. X. Gong, “Site-specific effects of tau phosphorylation on its microtubule assembly activity and self-aggregation,” European Journal of Neuroscience, vol. 26, no. 12, pp. 3429–3436, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Mondragon-Rodriguez B.-I. G. and F. García-Sierra, “The chronology and maturation of the neurofibrillary tangle pathology in Alzheimer's disease is based on the state of phosphorylation, conformational changes, and cleavage of tau protein,” Novascience Book. In press.
  27. S. Mondragón-Rodríguez, G. Basurto-Islas, I. Santa-Maria et al., “Cleavage and conformational changes of tau protein follow phosphorylation during Alzheimer's disease,” International Journal of Experimental Pathology, vol. 89, no. 2, pp. 81–90, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Mondragón-Rodríguez, G. Basurto-Islas, L. I. Binder, and F. García-Sierra, “Conformational changes and cleavage; are these responsible for the tau aggregation in Alzheimer's disease?” Future Neurology, vol. 4, no. 1, pp. 39–53, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. D. Fischer, M. D. Mukrasch, J. Biernat et al., “Conformational changes specific for pseudophosphorylation at serine 262 selectively impair binding of tau to microtubules,” Biochemistry, vol. 48, no. 42, pp. 10047–10055, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. C. A. Rankin, Q. Sun, and T. C. Gamblin, “Pseudo-phosphorylation of tau at Ser202 and Thr205 affects tau filament formation,” Molecular Brain Research, vol. 138, no. 1, pp. 84–93, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. B. A. J. Schaffer, L. Bertram, B. L. Miller et al., “Association of GSK3B with Alzheimer disease and frontotemporal dementia,” Archives of Neurology, vol. 65, no. 10, pp. 1368–1374, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. A. A. Asuni, C. Hooper, C. H. Reynolds, S. Lovestone, B. H. Anderton, and R. Killick, “GSK3α exhibits β-catenin and tau directed kinase activities that are modulated by Wnt,” European Journal of Neuroscience, vol. 24, no. 12, pp. 3387–3392, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. C. J. Phiel, C. A. Wilson, V. M. Y. Lee, and P. S. Klein, “GSK-3α regulates production of Alzheimer's disease amyloid-β peptides,” Nature, vol. 423, no. 6938, pp. 435–439, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. M. D. Kaytor and H. T. Orr, “The GSK3β signaling cascade and neurodegenerative disease,” Current Opinion in Neurobiology, vol. 12, no. 3, pp. 275–278, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. R. S. Jope and G. N. Bijur, “Mood stabilizers, glycogen synthase kinase-3β and cell survival,” Molecular Psychiatry, vol. 7, supplement 1, pp. S35–S45, 2002. View at Google Scholar · View at Scopus
  36. C. T. Chiu and D. M. Chuang, “Neuroprotective action of lithium in disorders of the central nervous system,” Zhong Nan Da Xue Xue Bao Yi Xue Ban, vol. 36, no. 6, pp. 461–476, 2011. View at Google Scholar · View at Scopus
  37. L. Gravitz, “Drugs: a tangled web of targets,” Nature, vol. 475, no. 7355, pp. S9–S11, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Mondragón-Rodríguez, G. Basurto-Islas, H.-G. Lee et al., “Causes versus effects: the increasing complexities of Alzheimer's disease pathogenesis,” Expert Review of Neurotherapeutics, vol. 10, no. 5, pp. 683–691, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. J. G. Howland and Y. T. Wang, “Synaptic plasticity in learning and memory: stress effects in the hippocampus,” Progress in Brain Research, vol. 169, pp. 145–158, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. V. M. Ho, J.-A. Lee, and K. C. Martin, “The cell biology of synaptic plasticity,” Science, vol. 334, no. 6056, pp. 623–628, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. G. L. Collingridge, S. Peineau, J. G. Howland, and Y. T. Wang, “Long-term depression in the CNS,” Nature Reviews Neuroscience, vol. 11, no. 7, pp. 459–473, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. V. J. Appleby, S. A. L. Corrêa, J. K. Duckworth et al., “LTP in hippocampal neurons is associated with a CaMKII-mediated increase in GluA1 surface expression,” Journal of Neurochemistry, vol. 116, no. 4, pp. 530–543, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Peineau, C. Taghibiglou, C. Bradley et al., “LTP inhibits LTD in the hippocampus via regulation of GSK3beta,” Neuron, vol. 53, no. 5, pp. 703–717, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. J. B. Kwok, C. T. Loy, G. Hamilton et al., “Glycogen synthase kinase-3beta and tau genes interact in Alzheimer's disease,” Annals of Neurology, vol. 64, no. 4, pp. 446–454, 2008. View at Google Scholar
  45. N. Zhang, J. T. Yu, Y. Yang, J. Yang, W. Zhang, and L. Tan, “Association analysis of GSK3B and MAPT polymorphisms with Alzheimer's disease in Han Chinese,” Brain Research, vol. 1391, pp. 147–153, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. F. Massoud and G. C. Leger, “Pharmacological treatment of Alzheimer disease,” Canadian Journal of Psychiatry, vol. 56, no. 10, pp. 579–588, 2011. View at Google Scholar
  47. F. Hernández, E. Langa, R. Cuadros, J. Avila, and N. Villanueva, “Regulation of GSK3 isoforms by phosphatases PP1 and PP2A,” Molecular and Cellular Biochemistry, vol. 344, no. 1-2, pp. 211–215, 2010. View at Publisher · View at Google Scholar · View at Scopus