Table of Contents Author Guidelines Submit a Manuscript
International Journal of Alzheimer’s Disease
Volume 2012 (2012), Article ID 591392, 7 pages
http://dx.doi.org/10.1155/2012/591392
Review Article

-Secretase-Dependent Proteolysis of Transmembrane Domain of Amyloid Precursor Protein: Successive Tri- and Tetrapeptide Release in Amyloid -Protein Production

1Department of Neuropathology, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0934, Japan
2Pharma Eight Co. Ltd., Kyoto, Kyoto 602-0841, Japan

Received 13 September 2012; Revised 27 November 2012; Accepted 12 December 2012

Academic Editor: Jeremy Toyn

Copyright © 2012 Mako Takami and Satoru Funamoto. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Haass, E. H. Koo, A. Mellon, A. Y. Hung, and D. J. Selkoe, “Targeting of cell-surface β-amyloid precursor protein to lysosomes: alternative processing into amyloid-bearing fragments,” Nature, vol. 357, no. 6378, pp. 500–503, 1992. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Citron, D. B. Teplow, and D. J. Selkoe, “Generation of amyloid β protein from its precursor is sequence specific,” Neuron, vol. 14, no. 3, pp. 661–670, 1995. View at Google Scholar · View at Scopus
  3. R. Vassar, B. D. Bennett, S. Babu-Khan et al., “β-Secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE,” Science, vol. 286, no. 5440, pp. 735–741, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. I. Pinnix, U. Musunuru, H. Tun et al., “A novel γ-secretase assay based on detection of the putative C-terminal fragment-γ of amyloid β protein precursor,” Journal of Biological Chemistry, vol. 276, no. 1, pp. 481–487, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. D. J. Selkoe, “Alzheimer's disease: genes, proteins, and therapy,” Physiological Reviews, vol. 81, no. 2, pp. 741–766, 2001. View at Google Scholar · View at Scopus
  6. B. De Strooper, P. Saftig, K. Craessaerts et al., “Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein,” Nature, vol. 391, no. 6665, pp. 387–390, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. B. De Strooper and G. König, “Alzheimer's disease. A firm base for drug development,” Nature, vol. 402, no. 6761, pp. 471–472, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. M. S. Wolfe, W. Xia, B. L. Ostaszewski, T. S. Diehl, W. T. Kimberly, and D. J. Selkoe, “Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and γ-secretase activity,” Nature, vol. 398, no. 6727, pp. 513–517, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Struhl and I. Greenwald, “Presenilin is required for activity and nuclear access of notch in drosophila,” Nature, vol. 398, no. 6727, pp. 522–525, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Yu, M. Nishimura, S. Arawaka et al., “Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and βAPP processing,” Nature, vol. 407, no. 6800, pp. 48–54, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Goutte, “Genetics leads the way to the accomplices of presenilins,” Developmental Cell, vol. 3, no. 1, pp. 6–7, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Francis, G. McGrath, J. Zhang et al., “aph-1 and pen-2 are required for Notch pathway signaling, γ-secretase cleavage of βAPP, and presenilin protein accumulation,” Developmental Cell, vol. 3, no. 1, pp. 85–97, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Edbauer, E. Winkler, J. T. Regula, B. Pesold, H. Steiner, and C. Haass, “Reconstitution of γ-secretase activity,” Nature Cell Biology, vol. 5, no. 5, pp. 486–488, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. W. T. Kimberly, M. J. LaVoie, B. L. Ostaszewski, W. Ye, M. S. Wolfe, and D. J. Selkoe, “γ-Secretase is a membrane protein complex comprised of presenilin, nicastrin, aph-1, and pen-2,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 11, pp. 6382–6387, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. N. Takasugi, T. Tomita, I. Hayashi et al., “The role of presenilin cofactors in the γ-secratase complex,” Nature, vol. 422, no. 6930, pp. 438–441, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. A. J. Beel and C. R. Sanders, “Substrate specificity of γ-secretase and other intramembrane proteases,” Cellular and Molecular Life Sciences, vol. 65, no. 9, pp. 1311–1334, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. M. S. Brown, J. Ye, R. B. Rawson, and J. L. Goldstein, “Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans,” Cell, vol. 100, no. 4, pp. 391–398, 2000. View at Google Scholar · View at Scopus
  18. M. S. Wolfe and R. Kopan, “Intramembrane proteolysis: theme and variations,” Science, vol. 305, no. 5687, pp. 1119–1123, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Tolia, K. Horré, and B. De Strooper, “Transmembrane domain 9 of presenilin determines the dynamic conformation of the catalytic site of γ-secretase,” Journal of Biological Chemistry, vol. 283, no. 28, pp. 19793–19803, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Takagi, A. Tominaga, C. Sato, T. Tomita, and T. Iwatsubo, “Participation of transmembrane domain 1 of presenilin 1 in the catalytic pore structure of the γ-secretase,” Journal of Neuroscience, vol. 30, no. 47, pp. 15943–15950, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Sato, S. Takagi, T. Tomita, and T. Iwatsubo, “The C-terminal PAL motif and transmembrane domain 9 of presenilin 1 are involved in the formation of the catalytic pore of the γ-secretase,” Journal of Neuroscience, vol. 28, no. 24, pp. 6264–6271, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Takeo, N. Watanabe, T. Tomita, and T. Iwatsubo, “Contribution of the γ-secretase subunits to the formation of catalytic pore of presenilin 1 protein,” Journal of Biological Chemistry, vol. 287, no. 31, pp. 25834–25843, 2012. View at Publisher · View at Google Scholar
  23. P. Osenkowski, H. Li, W. Ye et al., “Cryoelectron microscopy structure of purified γ-secretase at 12Å resolution,” Journal of Molecular Biology, vol. 385, no. 2, pp. 642–652, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Citron, T. Oltersdorf, C. Haass et al., “Mutation of the β-amyloid precursor protein in familial Alzheimer's disease increases β-protein production,” Nature, vol. 360, no. 6405, pp. 672–674, 1992. View at Publisher · View at Google Scholar · View at Scopus
  25. J. T. Jarrett, E. P. Berger, and P. T. Lansbury, “The carboxy terminus of the β amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer's disease,” Biochemistry, vol. 32, no. 18, pp. 4693–4697, 1993. View at Google Scholar · View at Scopus
  26. R. Wang, D. Sweeney, S. E. Gandy, and S. S. Sisodia, “The profile of soluble amyloid β protein in cultured cell media. Detection and quantification of amyloid β protein and variants by immunoprecipitation-mass spectrometry,” Journal of Biological Chemistry, vol. 271, no. 50, pp. 31894–31902, 1996. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Citron, D. Westaway, W. Xia et al., “Mutant presenilins of Alzheimer's disease increase production of 42-residue amyloid β-protein in both transfected cells and transgenic mice,” Nature Medicine, vol. 3, no. 1, pp. 67–72, 1997. View at Publisher · View at Google Scholar · View at Scopus
  28. N. J. Clarke, A. J. Tomlinson, Y. Ohyagi, S. Younkin, and S. Naylor, “Detection and quantitation of cellularly derived amyloid β peptides by immunoprecipitation-HPLC-MS,” FEBS Letters, vol. 430, no. 3, pp. 419–423, 1998. View at Publisher · View at Google Scholar · View at Scopus
  29. D. Beher, J. D. J. Wrigley, A. P. Owens, and M. S. Shearman, “Generation of C-terminally truncated amyloid-β peptides is dependent on γ-secretase activity,” Journal of Neurochemistry, vol. 82, no. 3, pp. 563–575, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. Gu, H. Misonou, T. Sato, N. Dohmae, K. Takio, and Y. Ihara, “Distinct intramembrane cleavage of the beta-amyloid precursor protein family resembling gamma-secretase-like cleavage of Notch,” Journal of Biological Chemistry, vol. 276, no. 38, pp. 35235–35238, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Sastre, H. Steiner, K. Fuchs et al., “Presenilin-dependent γ-secretase processing of β-amyloid precursor protein at a site corresponding to the S3 cleavage of Notch,” EMBO Reports, vol. 2, no. 9, pp. 835–841, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Weidemann, S. Eggert, F. B. M. Reinhard et al., “A novel ε-cleavage within the transmembrane domain of the Alzheimer amyloid precursor protein demonstrates homology with notch processing,” Biochemistry, vol. 41, no. 8, pp. 2825–2835, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. I. Okamoto, Y. Kawano, D. Murakami et al., “Proteolytic release of CD44 intracellular domain and its role in the CD44 signaling pathway,” Journal of Cell Biology, vol. 155, no. 5, pp. 755–762, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. H. J. Lee, K. M. Jung, Y. Z. Huang et al., “Presenilin-dependent γ-secretase-like intramembrane cleavage of ErbB4,” Journal of Biological Chemistry, vol. 277, no. 8, pp. 6318–6323, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Marambaud, J. Shioi, G. Serban et al., “A presenilin-1/γ-secretase cleavage releases the E-cadherin intracellular domain and regulates disassembly of adherens junctions,” EMBO Journal, vol. 21, no. 8, pp. 1948–1956, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. P. May, Y. Krishna Reddy, and J. Herz, “Proteolytic processing of low density lipoprotein receptor-related protein mediates regulated release of its intracellular domain,” Journal of Biological Chemistry, vol. 277, no. 21, pp. 18736–18743, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Ikeuchi and S. S. Sisodia, “The Notch ligands, Delta1 and Jagged2, are substrates for presenilin-dependent “γ-secretase” cleavage,” Journal of Biological Chemistry, vol. 278, no. 10, pp. 7751–7754, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Takami, Y. Nagashima, Y. Sano et al., “γ-Secretase: successive tripeptide and tetrapeptide release from the transmembrane domain of β-carboxyl terminal fragment,” Journal of Neuroscience, vol. 29, no. 41, pp. 13042–13052, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. K. Yanagida, M. Okochi, S. Tagami et al., “The 28-amino acid form of an APLPl-derived Aβ-like peptide is a surrogate marker for Aβ42 production in the central nervous system,” EMBO Molecular Medicine, vol. 1, no. 4, pp. 223–235, 2009. View at Publisher · View at Google Scholar
  40. J. Wanngren, J. Ottervald, S. Parpal et al., “Second generation γ-secretase modulators exhibit different modulation of notch β and Aβ production,” Journal of Biological Chemistry, vol. 287, no. 39, pp. 32640–32650, 2012. View at Publisher · View at Google Scholar
  41. S. Lammich, M. Okochi, M. Takeda et al., “Presenilin-dependent intramembrane proteolysis of CD44 leads to the liberation of its intracellular domain and the secretion of an Aβ-like peptide,” Journal of Biological Chemistry, vol. 277, no. 47, pp. 44754–44759, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. T. Sato, N. Dohmae, Y. Qi et al., “Potential link between amyloid beta-protein 42 and C-terminal fragment gamma 49-99 of beta-amyloid precursor protein,” Journal of Biological Chemistry, vol. 278, no. 27, pp. 24294–20301, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Funamoto, M. Morishima-Kawashima, Y. Tanimura, N. Hirotani, T. C. Saido, and Y. Ihara, “Truncated carboxyl-terminal fragments of β-amyloid precursor protein are processed to amyloid β-proteins 40 and 42,” Biochemistry, vol. 43, no. 42, pp. 13532–13540, 2004. View at Google Scholar · View at Scopus
  44. Y. Qi-Takahara, M. Morishima-Kawashima, Y. Tanimura et al., “Longer forms of amyloid β protein: implications for the mechanism of intramembrane cleavage by γ-secretase,” Journal of Neuroscience, vol. 25, no. 2, pp. 436–445, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. L. Chévez-Gutiérrez, L. Bammens, I. Benilova et al., “The mechanism of γ-Secretase dysfunction in familial Alzheimer disease,” EMBO Journal, vol. 31, no. 10, pp. 2261–2274, 2012. View at Publisher · View at Google Scholar
  46. O. Quintero-Monzon, M. M. Martin, M. A. Fernandez, C. A. Cappello, P. Osenkowski, and M. S. Wolfe, “Dissociation between the processivity and total activity of γ-secretase: implications for the mechanism of Alzheimer's disease-causing presenilin mutations,” Biochemistry, vol. 50, no. 42, pp. 9023–9035, 2011. View at Publisher · View at Google Scholar
  47. H. F. Dovey, V. John, J. P. Anderson et al., “Functional gamma-secretase inhibitors reduce beta-amyloid peptide levels in brain,” Journal of Neurochemistry, vol. 76, no. 1, pp. 173–181, 2001. View at Publisher · View at Google Scholar
  48. G. Zhao, G. Mao, J. Tan et al., “Identification of a new presenilin-dependent ζ-cleavage site within the transmembrane domain of amyloid precursor protein,” Journal of Biological Chemistry, vol. 279, no. 49, pp. 50647–50650, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. G. Zhao, M. Z. Cui, G. Mao et al., “γ-cleavage is dependent on ζ-cleavage during the proteolytic processing of amyloid precursor protein within its transmembrane domain,” Journal of Biological Chemistry, vol. 280, no. 45, pp. 37689–37697, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. T. Sato, Y. Tanimura, N. Hirotani, T. C. Saido, M. Morishima-Kawashima, and Y. Ihara, “Blocking the cleavage at midportion between γ- and ε-sites remarkably suppresses the generation of amyloid β-protein,” FEBS Letters, vol. 579, no. 13, pp. 2907–2912, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. K. S. Vetrivel, H. Cheng, W. Lin et al., “Association of γ-secretase with lipid rafts in post-golgi and endosome membranes,” Journal of Biological Chemistry, vol. 279, no. 43, pp. 44945–44954, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. S. Yagishita, M. Morishima-Kawashima, S. Ishiura, and Y. Ihara, “Aβ46 is processed to Aβ40 and Aβ43, but not to Aβ42, in the low density membrane domains,” Journal of Biological Chemistry, vol. 283, no. 2, pp. 733–738, 2008. View at Publisher · View at Google Scholar
  53. S. Yagishita, M. Morishima-Kawashima, Y. Tanimura, S. Ishiura, and Y. Ihara, “DAPT-induced intracellular accumulations of longer amyloid β-proteins: further implications for the mechanism of intramembrane cleavage by γ-secretase,” Biochemistry, vol. 45, no. 12, pp. 3952–3960, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Fukumori, R. Fluhrer, H. Steiner, and C. Haass, “Three-amino acid spacing of presenilin endoproteolysis suggests a general stepwise cleavage of γ-secretase-mediated intramembrane proteolysis,” Journal of Neuroscience, vol. 30, no. 23, pp. 7853–7862, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. S. Osawa, S. Funamoto, M. Nobuhara et al., “Phosphoinositides suppress γ-secretase in both the detergent-soluble and -insoluble states,” Journal of Biological Chemistry, vol. 283, no. 28, pp. 19283–19292, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Okochi, H. Steiner, A. Fukumori et al., “Presenilins mediate a dual intramembranous γ-secretase cleavage of Notch-1,” EMBO Journal, vol. 21, no. 20, pp. 5408–5416, 2002. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Okochi, A. Fukumori, J. Jiang et al., “Secretion of the Notch-1 Aβ-like peptide during Notch signaling,” Journal of Biological Chemistry, vol. 281, no. 12, pp. 7890–7898, 2006. View at Publisher · View at Google Scholar · View at Scopus