Table of Contents Author Guidelines Submit a Manuscript
International Journal of Aerospace Engineering
Volume 2013, Article ID 171768, 12 pages
http://dx.doi.org/10.1155/2013/171768
Research Article

FE Analysis of Dynamic Response of Aircraft Windshield against Bird Impact

Laboratory of Engineering Simulation and Aerospace Computing, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China

Received 27 February 2013; Accepted 11 April 2013

Academic Editor: Hong Nie

Copyright © 2013 Uzair Ahmed Dar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Thorpe, “Fatalities and destroyed civil aircraft due to bird strikes, 1912–2002,” in Proceedings of the 26th Meeting of the International Bird Strike Committee, Warsaw, Poland, 2003.
  2. S. G. Zang, C. H. Wu, R. Y. Wang, and J. R. Ma, “Bird impact dynamic response analysis for windshield,” Journal of Aeronautical Materials, vol. 20, no. 4, pp. 41–45, 2000. View at Google Scholar
  3. A. Samuelson and L. Sornas, “Failure analysis of aircraft windshields subjected to bird impact,” in Proceedings of the 15th ICAS Congress, London, UK, 1986.
  4. R. R. Boroughs, “High speed bird impact analysis of the Learjet 45 windshield using DYNA3D,” in Proceedings of the 39th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit and AIAA/ASME/AHS Adaptive Structures Forum, pp. 49–59, Long Beach, Calif, USA, April 1998. View at Scopus
  5. R. E. McCarty, “Finite element analysis of a bird-resistant monolithic stretched acrylic canopy design for the F-16A aircraft,” in Proceedings of the American Institute of Aeronautics and Astronautics, Aircraft Systems and Technology Conference, Dayton, Ohio, USA, 1981.
  6. R. E. McCarty, M. G. Gran, and M. J. Baruch, “MAGNA nonlinear finite element analysis of T-46 aircraft windshield bird impact,” in Proceedings of the AIAA/AHS/ASEE Aircraft System Design and Technology Meeting, AIAA Paper 86-2732, Dayton, Ohio, USA, 1986.
  7. F. S. Wang and Z. F. Yue, “Numerical simulation of damage and failure in aircraft windshield structure against bird strike,” Materials and Design, vol. 31, no. 2, pp. 687–695, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. F. S. Wang, Z. F. Yue, and W. Z. Yan, “Factors study influencing on numerical simulation of aircraft windshield against bird strike,” Shock and Vibration, vol. 18, no. 3, pp. 407–424, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. X. Wang, Z. Feng, F. Wang, and Z. Yue, “Dynamic response analysis of bird strike on aircraft windshield based on damage-modified nonlinear viscoelastic constitutive relation,” Chinese Journal of Aeronautics, vol. 20, no. 6, pp. 511–517, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Guida, A. Grimaldi, F. Marulo, and A. Sollo, “FE study of windshield subjected to high speed bird impact,” in Proceedings of the 26th International Congress of the Aeronautical Sciences (ICAS '08), 2008.
  11. J. Liu, Y. L. Li, and F. Xu, “The numerical simulation of a bird-impact on an aircraft windshield by using the SPH method,” Advanced Materials Research, vol. 33–37, pp. 851–856, 2008. View at Google Scholar · View at Scopus
  12. S. Zhu, M. Tong, and Y. Wang, “Experiment and numerical simulation of a full-scale aircraft windshield subjected to bird impact,” in Proceedings of the 50th AIAA/ASME/ASCE/AHS/ ASC Structures, Structural Dynamics, and Materials Conference, Palm Springs, Calif, USA, 2009.
  13. J. Yang, X. Cai, and C. Wu, “Experimental and FEM study of windshield subjected to high speed bird impact,” Acta Mechanica Sinica, vol. 19, no. 6, pp. 543–550, 2003. View at Google Scholar · View at Scopus
  14. W. Lili, Z. Xixiong, S. Shaoqiu, G. Su, and B. Hesheng, “Impact dynamics investigation on some problems in bird strike on windshields of high speed aircrafts,” Acta Aeronautica et Astronautica Sinica, vol. 12, no. 2, pp. B27–B33, 1991. View at Google Scholar · View at Scopus
  15. F. Zhou, L. Wang, and S. Hu, “A damage-modified nonlinear visco-elastic constitutive relation and failure criterion of PMMA at high strain-rates,” Explosion and Shock Waves, vol. 12, no. 4, pp. 333–342, 1992. View at Google Scholar
  16. A. Wang, X. Qiao, and L. Li, “Finite element method numerical simulation of bird striking multilayer windshield,” Acta Aeronautica et Astronautica Sinica, Series A and B, vol. 19, pp. 446–450, 1998. View at Google Scholar
  17. Z. Zhi-lin, Z. Qi-qiao, and L. Ming-xing, “Bird impact dynamic response analysis for aircraft arc windshield,” Acta Aeronautica et Astronautica Sinica, vol. 9, article 018, 1992. View at Google Scholar
  18. R. Doubrava and V. Strnad, “Bird strike analyses on the parts of aircraft structure,” in Proceedings of the 27th Congress of the International Council of the Aeronautical Sciences, France, 2010.
  19. J. Bai and Q. Sun, “On the integrated design technique of windshield against bird strike,” Mechanics and Engineering, vol. 27, no. 1, pp. 14–18, 2005. View at Google Scholar
  20. Y. Zhang and Y. Li, “Analysis of the anti-bird impact performance of typical beam-edge structure based on ANSYS/LS-DYNA,” Advanced Materials Research, vol. 33–37, pp. 395–400, 2008. View at Google Scholar · View at Scopus
  21. A. F. Johnson and M. Holzapfel, “Modelling soft body impact on composite structures,” Composite Structures, vol. 61, no. 1-2, pp. 103–113, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Cheng and W. K. Binienda, “Simulation of soft projectiles impacting composite targets using an arbitrary Lagrangian-Eulerian formulation,” Journal of Aircraft, vol. 43, no. 6, pp. 1726–1731, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. F. Stoll and R. A. Brockman, “Finite element simulation of high-speed soft-body impacts,” in Proceedings of the 38th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, pp. 334–344, April 1997. View at Scopus
  24. R. Hedayati and S. Ziaei-Rad, “A new bird model and the effect of bird geometry in impacts from various orientations,” Aerospace Science and Technology, 2012. View at Publisher · View at Google Scholar
  25. AUTODYN Theory manual Rev. 4.3. Century Dynamics, a subsidiary of ANSYS Inc, 2005.
  26. J. Wilbeck, “Impact behavior of low strength projectiles,” Report AFML-TR- 77-134, Air Force Materials Laboratory, 1977. View at Google Scholar
  27. C. J. Welsh and V. Centonze, “Aircraft transparency testing artificial birds,” Report AEDC-TR-86-2, US Air Force, 1986. View at Google Scholar