Research Article  Open Access
RF Field BuildUp inside a Manned Space Vehicle Using Novel RayTracing Algorithm
Abstract
The radiofrequency (RF) field mapping and its analysis inside a space vehicle cabin, although of immense importance, represent a complex problem due to their inherent concavity. Further hybrid surface modeling required for such concave enclosures leads to ray proliferation, thereby making the problem computationally intractable. In this paper, space vehicle is modeled as a doublecurvatured general paraboloid of revolution (GPOR) frustum, whose aft section is matched to an endcapped right circular cylinder. A 3D raytracing package is developed which involves a uniform raylaunching scheme, an intelligent scheme for ray bunching, and an adaptive reception algorithm for obtaining raypath details inside the concave space vehicle. Due to nonavailability of image method for concave curvatured surfaces, the proposed raytracing method is validated with respect to the RF field buildup inside a closed lossy cuboid using image method. The RF field buildup within the space vehicle is determined using the details of ray paths and the material parameters. The results for RF field buildup inside a metalbacked dielectric space vehicle are compared with those of highly metallic one for parallel and perpendicular polarizations. The convergence of RF field within the vehicle is analyzed with respect to the propagation time and the number of bounces a ray undergoes before reaching the receiving point.
1. Introduction
In the fore section of any space vehicle, astronauts work in the presence of multiple radiating sources. This makes the astronaut cabin of space vehicle an important indoor environment which necessitates RF field mapping. The space vehicle cabin is essentially a concave structure. Over the last decades, ray tracing has been employed for sitespecific indoor propagation models [1–3], and it has been shown that multiple reflections are dominant for the RF field buildup within the cavity compared to the phenomenon of diffraction [4]. Although ray tracing has been used earlier for electromagnetic (EM) analysis of aircraft cabinlike enclosures, a closer scrutiny reveals that these predominantly employ measurements to merely fit their predictions or to validate their empirical models [5–7].
For EM environment analysis within the space shuttle interior (payload bay area), attempts have been made earlier to overcome the computational complexity by approximating the curved surfaces with large planar faceted plates [8]. However, this leads to a completely different ray solution set, which may not necessarily approximate to the case of curvatured surfaces under consideration. Further there are sections of space vehicle, which cannot be approximated by singlecurvature surfaces (e.g., circular and elliptic cylinders) and necessitate modeling with doublecurvatured surfaces (e.g., spherical, paraboloidal, and ellipsoidal sections). EM analysis for convex structures, including doublecurvatured structures, has been done using highfrequency methods along with analytical raytracing technique such as the Geodesic Constant Method (GCM) [9]. But this is restricted only to the external geometries, that is, the convex part of such aerospace structures.
The ray tracing becomes extremely cumbersome in the important applications of crevices and concavities within an enclosure (such as space vehicles, aircraft engine, cockpit, and passenger cabins) due to ray proliferation, arising from multiple reflections, transmission, and diffraction. In fact the only route to ray tracing available in such cases is ray casting [7], which improves the prediction only when the spatial rays are increasingly dense, leading to computational intractability. Hence, a feasible raytracing method is required to generate raypath data for practical applications.
In the present work, a novel refined raytracing method is developed for RF field computation inside a space vehicle including that for the microwave frequencies in the GHz region. A comprehensive 3D raytracing package is developed in conjunction with analytical surface modeling to generate the raypath data inside a typical space vehicle. The proposed raytracing method is validated with respect to the RF field buildup inside a closed lossy cuboid using the image method. This is because the image method is known to be valid for planar surfaces, whereas the concave curvatured surfaces like space vehicle or aircraft incabin have mostly nonplanar surfaces. The space vehicle is modeled as a hybrid of right circular cylinder and a general paraboloid of revolution (GPOR) frustum. The aft section is modelled by an endcapped right circular cylinder (Figure 1). The dimensions of a currently used space vehicle are considered for the RF simulations [10]. Test rays are launched from a radiating source located inside the space vehicle and are allowed to propagate inside the space vehicle. The reflection points at each surface and the corresponding reflected rays are obtained using the parametric equation of the surface and the surface normal [9] at each incident point. As the surface parameters of the modeled space vehicle are defined through analytical equations, the raypath computation time reduced significantly.
The cumulative raypath data up to th bounce including the direct ray is used for the estimation of RF field inside a space vehicle. It includes the details of each ray path traversed within the space vehicle before reaching the receiving point. Moreover the constitutive parameters of the space vehicle material are taken into account in calculating the total reflected power at the receiving point. It is well known that, unlike the convex surfaces, the RF field mapping inside a concave structure is an extremely complex problem dominated by the proliferation of reflected ray solutions. Hence in this paper, an empty space vehicle cabin is considered to analyze the problem of concavity. The transmitting and the receiving antennas are taken as a directional antenna (halfwavelength dipole). The RF field buildup at the receiver placed within a manned space vehicle is reported for both the perpendicular and parallel polarizations. The resultant field buildup at the receiving point is obtained by a coherent summation of the fields associated with each ray reaching the receiver after undergoing multiple bounces from the walls of the space vehicle. The results for a metallic space vehicle are compared with that of a metalbacked dielectric space vehicle. The convergence of the RF field buildup is studied with respect to the propagation time and the number of reflections a ray undergoes before reaching the receiving point.
2. Surface Modeling of a Space Vehicle
Hybrid quadratics such as general paraboloid of revolution (GPOR) frustum and finite right circular cylinder are sufficient enough to model a typical space vehicle for RF analysis. In analytical surface modeling, the surfaces are defined by parametric equations and the shaping parameters of the corresponding surfaces are calculated towards perfect matching.
2.1. Geometry of Space Vehicle
The schematic of the space vehicle is shown in Figure 1. The vehicle is modeled as a doublecurvatured general paraboloid of revolution (GPOR) frustum, whose aft section is matched to an endcapped right circular cylinder. To describe the analytical modeling, the dimensions of a typical space vehicle considered [10] are taken as follows: length of the cylindrical body: 7.50 m; right circular cylinder diameter: 4.50 m; matched GPOR diameter: 4.50 m; height of GPOR frustum: 5.00 m.
2.2. Calculation of Shaping Parameters in Hybrid Structure
The parametric equation of right circular cylinder is given by [9] where is the radius of the right circular cylinder, is its azimuth angle that varies from 0 to 360°, and () represents the finite length of the cylinder. To model the hybrid structure, one needs to determine the shaping parameters of the structure. The parametric equation of a GPOR is given by [11] where is now the azimuth angle of GPOR varying from 0 to 360°, is the GPOR basis parameter, and is the shaping parameter that represents the sharpness/flatness of the GPOR.
3. Propagation inside a Space Vehicle
A novel refined raytracing algorithm is developed for ray propagation analysis inside the concavities. The developed algorithm is validated with respect to a lossy cuboid using image method as image method is not available for concave surfaces. The proposed refined raytracing algorithm along with the RF field validation is given below.
3.1. Validation of Refined RayTracing Algorithm
As image method is simply not available for curved concavities such as the space vehicle, the RF field due to the rays obtained by the existing image method inside a lossy cuboid (2.70 m × 2.38 m × 2.40 m) and those obtained by the refined raytracing method developed inhouse are compared. The RF field buildup analysis is carried at 2.4 GHz. The source is kept at origin . The receiver is at . The cumulative ray paths up to 15 bounces are considered for the simulation studies. The constitutive parameters of the lossy walls of the cuboid are taken into account while estimating the net field buildup. Figure 2 presents the RF field buildup at the receiving point within the lossy cuboid (, mm) for perpendicular polarization. It may be observed that the refined raytracing algorithm has excellent agreement with image method in providing raypath descriptions for RF field buildup within the closed cavity.
3.2. Refined Ray Tracing inside the Space Vehicle
As described above, a closed analytically modeled hybrid space vehicle is considered for raypropagation analysis and the transmitter and the receiver are located inside the space vehicle without loss of generality at and . Figure 3 illustrates the schematic of the same.
Initially a uniform raylaunching scheme [12] is used from the isotropic source (transmitter), which is subsequently adapted for convergence of ray solutions at the receiver. Each ray is uniquely defined by its values. The rays are then allowed to propagate inside the cabin. The first intersection point is determined by the intersection formula between a line and the surface of the corresponding hybrid structure [13].
As the hybrid structure has four different quadratic surfaces at different heights, initial intersection point is checked with respect to coordinate and the surface equation is adopted for calculation of first incident point. The unit surface normal vector (Figure 4) at the first intersection point is calculated using the following equations with respect to the surface [9].
The unit surface normal equation of a second degree quadric patch is given by which for a right circular cylinder is expressed as while for the GPOR, it is given by The unit surface normal corresponding to the above four constituent surfaces of the hybrid structure is shown in Figure 4.
Once the surface normal at the point (where the ray is incident) is determined, the reflected ray is obtained by employing the Snell law of reflection. This process is repeated for the subsequent bounces.
An adaptive reception sphere is considered to capture the rays. The rays that reach the reception sphere are considered as the required set of rays for the RF field buildup inside the cabin. Further, an intelligent raybunching scheme is used to avoid duplication of ray solutions.
3.3. Results and Visualization of Ray Path
The raypath propagation characteristics inside the modeled space vehicle are checked for conditions of reflection, and the raypath data up to 40 bounces (cumulative) are generated. An angular separation of 0.1° is considered. It is observed that besides the direct ray only 66 rays reach the reception sphere cumulatively, up to 4 bounces. The raypath visualization of these 66 rays is shown in Figure 5.
The corresponding number of rays converging on to the receiver with respect to Nbounce and the program execution time are given in Table 1.

It is pointed out that for the RF field mapping application under consideration, as discussed in the next section, it is sufficient to consider the raypath data up to 40 bounces.
4. RF Field BuildUp inside the Space Vehicle
RF field mapping problem is formulated in three steps, namely, (i) analytical surface modeling of the space vehicle enclosure and (ii) raypath data generation within the enclosure using a refined raytracing algorithm, followed by (iii) frequency and polarization dependent EM field computation for the RF field mapping inside the space vehicle.
The RF field estimation within an enclosure needs the details of ray paths, reflection points, and radiation pattern of the transmitting and receiving antennas. In this paper, the raypath details and the coordinates of reflection point(s) are obtained using a novel adaptive threedimensional raytracing procedure, explained in the previous section. When multiple bounces and numerous ray paths are considered, the ray tracing becomes computationally intense and complicated. However, for an arbitrary concave environment, volumetric ray tracing still offers an efficient approach for RF simulation.
The resultant electric field at a receiving point within the enclosure [14] is given by where is the electric field due to the th ray at the receiver . This ray experiences a finite number of reflections during its path from the source to the receiver. The number of the reflections a ray will undergo depends on the angle at which the ray is launched from the source.
The source is taken as a point source. The rays launched within the cavity are weighted according to the radiation pattern of the transmitting antenna. Similarly at the receiver, the rays are weighted in accordance with the radiation pattern of the receiving antenna. The timeindependent field expressed in (4) is the coherent sum of field contributions of individual rays reaching the receiver. The phase of each ray (reaching the receiving point at different instants of time) is adjusted accordingly. is the initial field value at the source and and are the corresponding field values intercepted in the direction of ray. These field values are based on the radiation patterns of transmitting and receiving antennas, respectively. is the reflection coefficient of the th interface/wall [15–17], is the total raypath length, is the wavenumber, and is the path loss [14]. The dependence of the reflection coefficient on the material properties, namely, permittivity, conductivity, thickness, and the angle of incidence, is appropriately incorporated.
5. Results and Discussion
The RF simulations are carried out for both a metallic ( S/m) space vehicle and a metalbacked dielectric (; mm) space vehicle. The transmitting and receiving antennas are assumed to be directional (as halfwave dipole).
The launching of rays within an enclosure can be done efficiently for any angular separation. However, if the angular separation between the adjacent launched rays is too large, fewer test rays are launched and the RF field does not converge. This implies the requirement of launching the test rays at increasingly smaller angles, which at the other extreme is beset with the problem of computational intractability. It has been observed that a tradeoff exists for the class of problems being analyzed here, optimally in the range of 0.1° to 0.25°. In this study, the RF field buildup at the receiving point inside a space vehicle is obtained for the ray angular separation of 0.1° launched within the space vehicle. The effect of the frequency of operation on the RF field buildup is also studied. Simulations are carried out for two distinct frequencies of 6 and 8 GHz for both the parallel and perpendicular polarizations. It is pointed out that these distinct frequencies are commonly used in space and satellite communication applications.
First, the RF field buildup is estimated for the interior of a highly metallic space vehicle. The normalized RF field buildup at the receiving point inside the metallic space vehicle at 6 GHz is shown in Figures 6(a) and 6(b) for the perpendicular and parallel polarization, respectively. The corresponding results at 8 GHz are given in Figures 7(a) and 7(b), respectively. For a given ray bounce, the complete set of rays is characterized by distinct and . Here, refers to the minimum time of the (shortest) ray path for a given bounce. Likewise, corresponds to the maximum time of the (longest) ray within the set of rays for the same number of bounces. It is pointed out that, for the preset number of bounces, may be more than the propagation time of several rays of a lower bounce type and even than some of the rays of the higher bounce type. Hence one of the focuses of this study is to analyze the RF field convergence with respect to the cumulative bounce of the feasible ray paths (i.e., all the ray paths cumulatively up to a preset number of bounces).
(a)
(b)
(a)
(b)
In the case of perpendicular polarization (Figures 6(a) and 7(a)), the field convergence requires a very large number of bounces, and hence the time axis ought to be very large. However, the time window considered till 1.2 μsec is sufficient for practical applications as shown later. The results are reported till 40 bounces (cumulative), which converges within the ambit of computational tractability.
Since the walls of the space vehicle are considered to be highly metallic ( S/m), the rays do not suffer significant attenuation at each reflection before reaching the receiver. It can be observed from Figures 6(a) and 7(a) that the level of RF field buildup for perpendicular polarization tends to broadly increase with the number of bounces considered. This is ascribed to the fact that, as the number of bounces increases, the number of rays reaching the receiver also increases. These numerous rays reaching the receiver arrive from different directions and hence tend to substantially cancel leaving only a small net (positive or negative) RF field. This small net field contributes to the earlier threshold of the RF field buildup in the incremental sense, thereby leading to the extremely slow rate of convergence for the metallic case. This is on the expected lines since convergence has not been achieved within a highly metallic reverberation chamberlike environment [18].
In contrast, for the parallel polarization (Figures 6(b) and 7(b)), despite metallic walls, the RF field buildup converges rapidly. This is due to the fact that, for the parallel polarization, the direction of Efield vector changes continually [17] after successive (obliqueincidence) reflections. When the electric field associated with the multiple rays reaching the receiver is coherently superimposed, the fields with opposite phase tend to cancel each other, resulting in the rapid convergence of the total field buildup with respect to the number of bounces.
The amplitude of total RF field buildup at receiver, particularly initially, fluctuates with the number of bounces. This may be due to the fact that this study is emphasized with respect to the preset cumulative number of bounces, which is used as the cutoff that ignores all the higherbounce ray paths. Although the higher bounces tend to result in increasingly diminished (and hence negligible) electric field contributions, their contribution during the initial RF buildup is not necessarily so, thereby leading to the observed RF fluctuations. However, with the increase in time, this error tends to cancel itself out.
A discerning reader may also notice that the total RF field buildup inside a metallic space vehicle is higher at 6 GHz as compared to 8 GHz for both the polarizations. This is explained by the fact that the geometric pathlength solutions (between the source and receiver points) are independent of frequency. Thus compared to 8 GHz, each ray traverses fewer electrical wavelengths over the fixed geometric path at 6 GHz, leading to lesser attenuation and hence in general higher RF field build up values.
A metalbacked dielectric space vehicle is considered next. This dielectric in reality is highly absorbent in nature. Thus, a typical absorber permittivity is taken here, as ; mm. These constitutive parameters of the wall material are employed in the estimation of reflection coefficients [17] of each of the ray paths, as a function of polarization and all the successive angles of incidence. Thus, the contribution of each ray path reaching the receiver within the space vehicle can be coherently summed up after adjusting them in phase.
The resultant normalized RF field buildup within the space vehicle for 6 and 8 GHz is shown in Figures 8 and 9, respectively. The axis within these field normalized plots, is limited to 0.20 to facilitate a closer scrutiny. It can be readily observed that, for a metalbacked dielectric space vehicle, the ray contribution converges rapidly for both the perpendicular and parallel polarizations, both over time and the number of bounces. This is ascribed to the lossy nature of the metalbacked dielectric wall that the rays are incident upon, leading to attenuation and thus lower RF field amplitude and a rapid convergence [19].
(a)
(b)
(a)
(b)
6. Conclusion
The RF environment inside a space vehicle is analyzed based on the novel application of a refined raytracing algorithm proposed here along with hybrid surface modeling for the space vehicle. The refined ray tracing yields the required raypath data, which also facilitates visualization of all the rays that reach a particular subcube placed inside the space vehicle cabin. A raybunching algorithm is developed to differentiate the ray solutions as ray bunches that travel nearly parallel to reach the reception subcube. A refinement algorithm is then employed to identify the ray path within this ray bunch, which eventually converges on to the receiving point.
This algorithm generates the complete data for all the ray paths cumulatively up to a given number of bounces. In the applications where higher bounces are required, denser rays need to be launched to achieve convergence, which often leads to computational intractability. In this study, the RF field buildup at the receiving point inside a space vehicle is obtained for the rays launched at the angular separation of 0.1° within the space vehicle. Again, for the class of space vehicle cabin problem analyzed in this work, for the convergence of RF field buildup, it is sufficient to consider the ray paths cumulatively up to 40 bounces, which is within the realm of computational tractability.
The RF field buildup at the receiving point within the space vehicle is determined by summing the fields associated with each ray reaching the receiver after being adjusted in phase. The effect of operational frequency on the RF field buildup is also studied. Simulations are carried out for two distinct (uplink/downlink) frequencies of 6 and 8 GHz. The results for RF field buildup are compared for a metallic space vehicle and a metalbacked dielectric space vehicle. Since the wavelength traversed by a ray over the fixed geometric path is a function of frequency, the lower the frequency is, the lesser the number of wavelengths travelled by a ray will be, leading to lesser attenuation and hence higher RF field buildup values. It is due to this fact that the total RF field buildup inside a metallic space vehicle is found to be higher at 6 GHz as compared to 8 GHz for both the polarizations.
The number of rays reaching the receiver increases with the ray bounce. These numerous rays incidents from different directions tend to cancel out, leaving but a net (positive/negative) RF field. Despite the large number of rays, it is only this small net RF field that contributes to the incremental rise/fall in the threshold of the RF field buildup. This leads to the slow rate of convergence. In the case of perpendicular polarization, the RF field buildup inside a metallic space vehicle tends to broadly increase with the number of bounces considered. This trend is on the expected lines, since it is well known that the RF field convergence is not achieved within a highly metallic reverberation chamber. In contrast, for the parallel polarization, the direction of the Efield vector changes continually after each (obliqueincidence) reflection. When the electric field associated with the multiple rays reaching the receiver is coherently superimposed, the fields with opposite phase tend to cancel each other, resulting in the rapid convergence of the total field buildup with respect to the number of bounces.
For a metalbacked dielectric space vehicle, which is the practical case under consideration, the RF field buildup converges rapidly with respect to both the elapsed time and the number of bounces. This is true for both parallel and perpendicular polarizations. This is due to the lossy nature of metalbacked dielectric wall of the space vehicle enclosure.
References
 J. K. Chen, G. de Veciana, and T. S. Rappaport, “Sitespecific knowledge and interference measurement for improving frequency allocations in wireless networks,” IEEE Transactions on Vehicular Technology, vol. 58, no. 5, pp. 2366–2377, 2009. View at: Publisher Site  Google Scholar
 K. H. Ng, E. K. Tameh, and A. R. Nix, “A new heuristic geometrical approach for finding noncoplanar multiple edge diffraction ray paths,” IEEE Transactions on Antennas and Propagation, vol. 54, pp. 2669–2672, 2006. View at: Publisher Site  Google Scholar
 Y. B. Ouattara, S. Mostarshedi, E. Richalot, J. Wiart, and O. Picon, “Near and farfield models for scattering analysis of buildings in wireless communications,” IEEE Transactions on Antennas and Propagation, vol. 59, no. 11, pp. 4229–4238, 2011. View at: Publisher Site  Google Scholar
 H. Suzuki and A. S. Mohan, “Measurement and prediction of high spatial resolution indoor radio channel characteristic map,” IEEE Transactions on Vehicular Technology, vol. 49, no. 4, pp. 1321–1333, 2000. View at: Publisher Site  Google Scholar
 K. W. Hurst and S. W. Ellingson, “Path loss from a transmitter inside an aircraft cabin to an exterior fuselagemounted antenna,” IEEE Transactions on Electromagnetic Compatibility, vol. 50, no. 3, pp. 504–512, 2008. View at: Publisher Site  Google Scholar
 N. Moraitis, P. Constantinou, F. P. Fontan, and P. Valtr, “Propagation measurements and comparison with EM techniques for incabin wireless networks,” Eurasip Journal on Wireless Communications and Networking, vol. 2009, Article ID 784905, pp. 1–13, 2009. View at: Publisher Site  Google Scholar
 A. Kohmura, J. Picard, N. Yonemoto, and K. Yamamoto, “Measurement of EM field inside a cruising aircraft: potential problems for the use of mobile phones on board,” Journal of UltraWideband, Short Pulse Electromagnetics, vol. 9, pp. 335–342, 2010. View at: Google Scholar
 S. U. Hwu, Y. C. Loh, J. A. Dobbins, Q. D. Kroll, and C. C. Sham, “Space shuttle UHF communications performance evaluation,” IEEE Aerospace and Electronic Systems Magazine, vol. 20, no. 10, pp. 9–14, 2005. View at: Publisher Site  Google Scholar
 R. M. Jha and W. Wiesbeck, “Geodesic constant method: a novel approach to analytical surfaceray tracing on convex conducting bodies,” IEEE Antennas and Propagation Magazine, vol. 37, no. 2, pp. 28–38, 1995. View at: Publisher Site  Google Scholar
 P. Jackson, Ed., Jane’s All the World’s Aircraft 20102011, Jane’s Information Group, Coulsdon, UK, 2010.
 L. Jossefsson and P. Persson, Conformal Array Antenna Theory and Design, John Wiley & Sons, New York, NY, USA, 2006.
 S. Y. Seidel and T. S. Rappaport, “Sitespecific propagation prediction for wireless inbuilding personal communication system design,” IEEE Transactions on Vehicular Technology, vol. 43, no. 4, pp. 879–891, 1994. View at: Publisher Site  Google Scholar
 E. Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons, New York, NY, USA, 10th edition, 2010.
 G. E. Athanasiadou and A. R. Nix, “A novel 3d indoor raytracing propagation model: the path generator and evaluation of narrowband and wideband predictions,” IEEE Transactions on Vehicular Technology, vol. 49, no. 4, pp. 1152–1168, 2000. View at: Publisher Site  Google Scholar
 M. Albani, G. Carluccio, and P. H. Pathak, “Uniform ray description for the PO scattering by vertices in curved surface with curvilinear edges and relatively general boundary conditions,” IEEE Transactions on Antennas and Propagation, vol. 59, no. 5, pp. 1587–1596, 2011. View at: Publisher Site  Google Scholar
 P. Russer, Electromagnetics, Microwave Circuit and Antenna Design for Communications, Artech House, Norwood, Mass, USA, 2003.
 C. L. Holloway and E. F. Kuester, “Impedancetype boundary conditions for a periodic interface between a dielectric and a highly conducting medium,” IEEE Transactions on Antennas and Propagation, vol. 48, no. 10, pp. 1660–1672, 2000. View at: Publisher Site  Google Scholar
 D.H. Kwon, R. J. Burkholder, and P. H. Pathak, “Ray analysis of electromagnetic field buildup and quality factor of electrically large shielded enclosures,” IEEE Transactions on Electromagnetic Compatibility, vol. 40, no. 1, pp. 19–26, 1998. View at: Publisher Site  Google Scholar
 B. Choudhury, H. Singh, J. P. Bommer, and R. M. Jha, “RF field mapping inside large passenger aircraft cabin using refined raytracing algorithm,” IEEE Antennas and Propagation Magazine, vol. 55, no. 1, pp. 276–288, 2013. View at: Google Scholar
Copyright
Copyright © 2013 Balamati Choudhury et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.