Table of Contents Author Guidelines Submit a Manuscript
International Journal of Aerospace Engineering
Volume 2013, Article ID 627509, 11 pages
http://dx.doi.org/10.1155/2013/627509
Research Article

Relative Navigation in LEO by Carrier-Phase Differential GPS with Intersatellite Ranging Augmentation

1Department of Aerospace Engineering, University of Naples “Federico II,” Piazzale Tecchio 80, 80125 Naples, Italy
2Department for Technologies, University of Naples “Parthenope,” Centro Direzionale, Isola C4, 80143 Naples, Italy

Received 31 August 2012; Revised 21 December 2012; Accepted 4 January 2013

Academic Editor: Paul Williams

Copyright © 2013 Alfredo Renga et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Krieger and A. Moreira, “Spaceborne bi- and multistatic SAR: potential and challenges,” IEE Proceedings: Radar, Sonar and Navigation, vol. 153, no. 3, pp. 184–186, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Persson, P. Bodin, E. Gill, J. Harr, and J. Jorgensen, “Prisma an autonomous formation flying mission,” in Proceedings of the 4S Symposium: Small Satellite Systems and Services, pp. 25–29, Sardinia, Italy, September 2006.
  3. G. Fasano, M. Grassi, and D. Accardo, “A stereo-vision based system for autonomous navigation of an in-orbit servicing platform,” in Proceedings of the AIAA Infotech at Aerospace Conference and Exhibit and AIAA Unmanned Unlimited Conference, Seattle, Wash, USA, April 2009, art. number 2009-1934. View at Scopus
  4. S. Leung and O. Montenbruck, “Real-time navigation of formation-flying spacecraft using global-positioning-system measurements,” Journal of Guidance, Control, and Dynamics, vol. 28, no. 2, pp. 226–235, 2005. View at Google Scholar · View at Scopus
  5. T. Ebinuma, R. H. Bishop, and E. G. Lightsey, “Integrated hardware investigations of precision spacecraft rendezvous using the global positioning system,” Journal of Guidance, Control, and Dynamics, vol. 26, no. 3, pp. 425–433, 2003. View at Google Scholar · View at Scopus
  6. E. Gill and H. Runge, “Tight formation flying for an along-track SAR interferometer,” Acta Astronautica, vol. 55, no. 3–9, pp. 473–485, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Kroes, O. Montenbruck, W. Bertiger, and P. Visser, “Precise GRACE baseline determination using GPS,” GPS Solutions, vol. 9, no. 1, pp. 21–31, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Krieger, A. Moreira, H. Fiedler et al., “TanDEM-X: a satellite formation for high-resolution SAR interferometry,” IEEE Transactions on Geoscience and Remote Sensing, vol. 45, no. 11, pp. 3317–3341, 2007. View at Publisher · View at Google Scholar
  9. G. T. French, UnderstAnding the GPS: An Introduction to the Global Positioning System, GeoResearch, Bethesda, Md, USA, 1996.
  10. J. Farrel and M. Barth, The Global Positioning System and Inertial Navigation, McGraw-Hill, New York, NY, USA, 1999.
  11. J. J. Spilker, “Fundamentals of signal tracking theory,” in Global Positioning System: Theory and Applications, B. W. Parkinson and J. J. Spilker, Eds., vol. 1, pp. 245–327, American Institute of Aeronautics and Astronautics Inc, Washington, DC, USA, 1996. View at Google Scholar
  12. A. Garcìa-Rodriguez, “Formation flight radio-frequency metrology,” ESA Technical Note TEC-ETN/20007.04, Issue 1, 2007. View at Google Scholar
  13. C.-W. Park, Precise relative navigation using augmented CDGPS [Ph.D. thesis], Stanford University, Department of Mechanical Engineering, Cambridge, Mass, USA, 2001.
  14. S. Persson, S. Veldman, and P. Bodin, “PRISMA-A formation flying project in implementation phase,” Acta Astronautica, vol. 65, pp. 1360–1374, 2009. View at Publisher · View at Google Scholar
  15. R. G. Zenick and K. Kohlhepp, “GPS micro navigation and communication system for clusters of micro and nanosatellites,” in Proceedings of the IEEE Aerospace Conference, vol. 5, pp. 2515–2522, Big Sky, Mont, USA, March 2001.
  16. P. A. Stadter, A. A. Chacos, R. J. Heins, G. T. Moore, E. A. Olsen, and M. S. Asher, “Confluence of navigation, communication, and control in distributed spacecraft systems,” in Proceedings of the IEEE Aerospace Conference, vol. 2, pp. 563–578, Big Sky, Mont, USA, March 2001.
  17. J. C. Adams, W. Gregorwich, L. Capots, and D. Liccardo, “Ultra-wideband for navigation and communications,” in IEEE Aerospace Conference, vol. 2, pp. 785–792, Big Sky, Mont, USA, March 2001.
  18. D. Maessen and E. Gill, “Relative orbital element estimation and observability analysis for formation flying satellites using inter-satellite range measurements only,” in Proceedings of the AIAA Guidance, Navigation, and Control Conference, Toronto, Canada, August 2010.
  19. J. Russell Carpenter and K. T. Alfriend, “Navigation accuracy guidelines for orbital formation flying,” Journal of the Astronautical Sciences, vol. 53, no. 2, pp. 207–219, 2005. View at Google Scholar · View at Scopus
  20. U. Tancredi, A. Renga, and M. Grassi, “GPS-based relative navigation of LEO formations with varying baselines,” in Proceedings of the AIAA Guidance Navigation and Control Conference, Toronto, Canada, August 2010.
  21. U. Tancredi, A. Renga, and M. Grassi, “Carrier-based Differential GPS for autonomous relative navigation in LEO,” in Proceedings of the AIAA Guidance, Navigation, and Control Conference, Minneapolis, Minn, USA, August 2012, AIAA 2012-4707.
  22. U. Tancredi, A. Renga, and M. Grassi, “Ionospheric path delay models for spaceborne GPS receivers flying in formation with large baselines,” Advances in Space Research, vol. 48, no. 3, pp. 507–520, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Renga and M. Grassi, “Precise relative navigation for highly variable baselines using carrier-based differential GPS,” in Proceedings of the 59th International Astronautical Congress (IAC '08), pp. 5000–5011, October 2008. View at Scopus
  24. A. Renga, M. Grassi, and A. Intelisano, “Carrier-based differential GPS filtering approaches for precise relative positioning in formation flying with highly variable inter-satellite distance,” in Proceedings of the 3rd International Symposium on Formation Flying, Missions and Technologies (ESA-ESTEC '08), April 2008. View at Scopus
  25. P. de Jonge and C. Tiberius, The LAMBDA Method for Integer Ambiguity Estimation: Implementation Aspects, vol. 12, Delft Geodetic Computing Centre, 1996.
  26. A. G. Rodriguez, A.-M. B. Martinez, C. Mehlen et al., “GNSS in space: part 2 formation flying radio frequency techniques and technology,” InsideGNSS, pp. 43–51, January-February 2009. View at Google Scholar
  27. G. Purcell, D. Kuang, S. Lichten, S.-C. Wu, and L. Young, “Autonomous formation flyer (AFF) sensor technology development,” Technical Report NASA, TMO Progress Report 42-134, 1998. View at Google Scholar
  28. M. Aung, G. H. Purcell, J. Y. Tien et al., “Autonomous formation flying sensor for the starlight mission,” in Proceedings of the International Symposium Formation Flying Missions and Technologies, Toulouse, France, October 2002.
  29. http://nssdc.gsfc.nasa.gov/multi/tdrs.html.
  30. S. Wang and E. Zhang, “Inter-satellite radio links and spread-spectrum ranging for satellite formation flying,” in Proceedings of the 3rd International Conference on Microwave and Millimeter Wave Technology, pp. 233–236, August 2002.
  31. J. C. Adams, W. Gregorwich, L. Capots, and D. Liccardo, “Ultra-wideband for navigation and communications,” in Proceedings of the IEEE Aerospace Conference, vol. 2, pp. 785–792, Big Sky, Mont, USA, March 2001.
  32. F. D. Busse, Precise formation-state estimation in low earth orbit using carrier differential GPS [Ph.D. dissertation], Department of Aeronautics and Astronautics, Stanford University, Stanford, Calif, USA, 2003.
  33. J. A. Klobuchar, “Ionospheric effects on GPS,” in Global Positioning System: Theory and Applications, B. W. Parkinson and J. J. Spilker, Eds., vol. 1, pp. 485–515, American Institute of Aeronautics and Astronautics, Washington, DC, USA, 1996. View at Google Scholar
  34. O. Montenbruck, M. Wermuth, and R. Kahle, “GPS based relative navigation for the TanDEM-X mission—first flight results,” Navigation, vol. 58, no. 4, pp. 293–304, 2011-2012. View at Google Scholar
  35. http://www.gpsoftnav.com/satnav.html.
  36. A. Renga, U. Tancredi, and M. Grassi, “GPS-based relative navigation in earth observation missions relying on cooperative satellites,” in Small Satellite Missions For Earth Observation, R. Sandau, H.-P. Roeser, and A. Valenzuela, Eds., pp. 467–475, 2010. View at Google Scholar
  37. ftp://cddis.gsfc.nasa.gov/gps/products/ionex/.
  38. O. Montenbruck and E. Gill, “Ionospheric correction for GPS tracking of LEO satellites,” Journal of Navigation, vol. 55, no. 2, pp. 293–304, 2002. View at Publisher · View at Google Scholar · View at Scopus