Table of Contents Author Guidelines Submit a Manuscript
International Journal of Aerospace Engineering
Volume 2013 (2013), Article ID 748751, 9 pages
http://dx.doi.org/10.1155/2013/748751
Research Article

Real-Time Hardware-in-the-Loop Laboratory Testing for Multisensor Sense and Avoid Systems

1Department of Industrial Engineering (DII), University of Naples “Federico II,” Piazzale Tecchio 80, 80125 Naples, Italy
2Department for Technologies, University of Naples “Parthenope,” Centro Direzionale, Isola C4, 80143 Naples, Italy

Received 29 March 2013; Revised 27 May 2013; Accepted 30 May 2013

Academic Editor: N. Ananthkrishnan

Copyright © 2013 Giancarmine Fasano et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This paper focuses on a hardware-in-the-loop facility aimed at real-time testing of architectures and algorithms of multisensor sense and avoid systems. It was developed within a research project aimed at flight demonstration of autonomous non-cooperative collision avoidance for Unmanned Aircraft Systems. In this framework, an optionally piloted Very Light Aircraft was used as experimental platform. The flight system is based on multiple-sensor data integration and it includes a Ka-band radar, four electro-optical sensors, and two dedicated processing units. The laboratory test system was developed with the primary aim of prototype validation before multi-sensor tracking and collision avoidance flight tests. System concept, hardware/software components, and operating modes are described in the paper. The facility has been built with a modular approach including both flight hardware and simulated systems and can work on the basis of experimentally tested or synthetically generated scenarios. Indeed, hybrid operating modes are also foreseen which enable performance assessment also in the case of alternative sensing architectures and flight scenarios that are hardly reproducible during flight tests. Real-time multisensor tracking results based on flight data are reported, which demonstrate reliability of the laboratory simulation while also showing the effectiveness of radar/electro-optical fusion in a non-cooperative collision avoidance architecture.