International Journal of Aerospace Engineering

Volume 2015 (2015), Article ID 570382, 8 pages

http://dx.doi.org/10.1155/2015/570382

## Ionospheric Delay Handling for Relative Navigation by Carrier-Phase Differential GPS

^{1}Department of Industrial Engineering, University of Naples “Federico II”, 80125 Naples, Italy^{2}Department of Engineering, University of Naples “Parthenope”, 80143 Naples, Italy

Received 11 April 2015; Revised 25 June 2015; Accepted 2 July 2015

Academic Editor: Mahmut Reyhanoglu

Copyright © 2015 A. Renga et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

#### Abstract

The paper investigates different solutions for ionospheric delay handling in high accuracy long baseline relative positioning by Carrier-Phase Differential GPS (CDGPS). Standard literature approaches are reviewed and the relevant limitations are discussed. Hence, a completely ionosphere-free approach is proposed, in which the differential ionospheric delays are cancelled out by combination of dual frequency GPS measurements. The performance of this approach is quantified over real-world spaceborne GPS data made available by the Gravity Recovery and Climate Experiment (GRACE) mission and compared to the standard solution.

#### 1. Introduction

Carrier-Phase Differential GPS (CDGPS) is a proven technology in several fields of application. CDGPS has been already employed for relative positioning of Low Earth Orbit (LEO) satellites flying in formation [1–4], of aircraft with respect to runways [5] and for cooperative self-separation of general aviation aircraft [6]. The capability to achieve high accuracy by CDGPS is based on the possibility to exploit the integer nature of Double Difference (DD) carrier-phase ambiguities [7]. However, as the separation among the satellites increases, the correlation of ionospheric delays among the receivers decreases [8]. As a result, DD GPS observables are affected by significant errors that complicate the integer resolution task. This paper investigates the effects of different strategies for ionospheric delay compensation on the accuracy in the relative positioning of GPS receivers in LEO over long baselines. Its results can be extended, at least in principle, to other formation flying applications [9], such as those involving Very Light Jets [10] and/or Unmanned Aerial Systems [11–13].

Different approaches exist in the literature for dealing with ionospheric delays. In high accuracy, postprocessing applications with dual frequency data [14, 15], the DD ionospheric delays are estimated within a dynamic filter [16], for example, the Extended Kalman Filter (EKF), and are modelled by very simple stochastic models, typically using random walk processes in the filter’s state vector. As an alternative, delays are modelled by Lear’s model [1, 17] which allows relating the slant ionospheric delays to the Vertical Total Electron Content (VTEC) above the receivers. Even though modelling the ionospheric delays helps to increase their observability, and thus to aid in the ambiguity resolution task, Lear’s model is known to be structurally capable of reproducing actual ionospheric delays only to a limited extent [8].

It is well known that linear combinations of GPS dual frequency measurements can be used to delete the ionospheric delays to first order. When those combinations are used as an input to the EFK, it can be expected that the magnitude of the ionospheric delays does not affect the achievable relative positioning accuracy. However, the use of an ionosphere-free approach is known to complicate significantly the integer ambiguities resolution task if compared to approaches that attempt to model the ionosphere [18, 19]. Hence, the choice between model-based methods (e.g., based on Lear’s model) and ionosphere-free approaches is in general not trivial [20], depending on the relative distance between the receivers, on relative dynamics, and on the status of ionospheric activity. In this sense, the ionospheric activity plays a major role in determining the set of GPS measurements and combinations to process to improve the relative positioning accuracy.

In this paper, a completely ionosphere-free approach is pursued, in which the ionospheric delays are cancelled out by combination of dual frequency GPS measurements. Several alternative combinations are investigated based on the ionosphere-free combination of pseudorange and carrier-phase observables, but also on GRoup And PHase Ionospheric Correction (GRAPHIC) and Melbourne-Wubbena combinations and thus the best combinations are selected. Based on a relative positioning scheme previously developed by the authors [17], the performance of each approach is quantified over real-world spaceborne GPS data made available by the Gravity Recovery and Climate Experiment (GRACE) mission.

The paper is organized as follows. First the conventional approach is presented in which the ionospheric delays are estimated as part of the state vector through Lear’s model. Then ionosphere-free observables are derived from the DD observation models, and two different combinations are selected for being integrated in an ionosphere-free formulation of the EKF. The developed filter is finally tested on GRACE data.

#### 2. Ionospheric Delays Estimated by Lear’s Model

The most common approach for handling the differential ionospheric delays in high accuracy long baseline applications is to estimate the DD ionospheric delays within the EKF modelling them using random walk processes in the state vector [14, 15]. This scheme usually integrates an EKF with an Integer Least Squares estimator based on the LAMDBA method. This approach can be not sufficiently accurate in real-time on-board implementations when accurate stochastic and dynamic models cannot be used. In such conditions, a reliable way to proceed is to model the ionospheric delays through the VTEC above the receivers by Lear’s mapping function [1, 8]. With specific reference to a formation of two satellites, this approach leads to the following state and measurement vectors:where and are the baseline and the relative velocity vectors expressed in the Earth-Centred Earth-Fixed (ECEF) reference frame and stack together the cycle ambiguities on the L1 frequency for the DD couples:where the pivot satellite, that is, the reference GPS satellite selected for calculating DD observables, is indicated with 0 for simplicity. , instead, stacks together wide-lane cycle ambiguities. In (1) indicates DD pseudorange observables and represents DD carrier-phase ones. The subscripts 1 and 2 stand for L1 and L2 GPS frequencies, respectively, whereas and subscripts refer to the receivers onboard the satellites. Finally, VTEC is the vector including the two vertical total electron contents for the two receivers. According to Lear’s model the zero difference ionospheric delay in meters for the GPS satellite and the receiver can be written as [1, 8]where is L1 carrier frequency in Hz, is the (scalar) vertical total electron content for modeling the ionospheric delay of the receiver and is expressed in number of electrons per square meter, and is the elevation of the GPS satellite with respect to the receiver .

The main advantage of Lear’s model is the capability to predict zero difference ionospheric delays, relevant to different tracked GPS satellites, as a function of a single unknown parameter (i.e., VTEC_{A}), which is a desirable property for navigation filters [1].

This reference model of (1)–(3) has shown satisfactory observability features [17], since it is capable of delivering good estimates of the Integer Ambiguities (IA) even in case of only 3 DD observations. However, this VTEC-based EKF has some inherent accuracy limitations, due to its inability of rejecting deviations of the true ionosphere from Lear’s model, which appear as additional error terms in the baseline estimate [8]. In what follows, the possibility is discussed of overcoming the limitations of the VTEC-based EKF by deleting the ionospheric delays through measurement combinations.

#### 3. Ionosphere-Free Observables

Dual frequency DD carrier-phase and pseudorange observables can be combined in different ways to generate ionosphere-free measurements. The complete DD observation model is thus presented before deriving the relevant ionosphere-free observables.

##### 3.1. DD Observation Model

The DD measurements have the following expressions [21]:where(i) is ratio between the L2 and L1 frequencies, and the and superscripts refer to the GPS satellites radiating the navigation signal;(ii), are the wavelengths of L1 and L2 signals, respectively;(iii) is the DD geometric term between the two receivers;(iv) is the DD ionospheric delay on the L1 frequency, which is denoted simply by ionospheric delay in the following;(v) is the integer ambiguity on the L1 frequency (on L2 which is analogous);(vi) is the noise term on the L1 frequency (on L2 which is analogous);(vii) is the noise term on the L1 frequency (on L2 which is analogous).Each of the four observables in (4) is assumed to be independent from the other ones. However, the DD measurements of the same kind at a certain time epoch are mutually correlated due to the presence of the pivot satellite in all the measurements. More precisely, denoting generically by the observation type, that is, , and by its standard deviation, we have

##### 3.2. Ionospheric Free Combination

The most common combination for eliminating the ionospheric delay, referred to as Ionosphere-Free (IF) [21], is concerned with combining observations of the same type on the two carrier frequencies, exploiting the frequency dependence of the first-order ionospheric delay effect. More precisely, the IF combinations are obtained asThus, two IF observables per each DD couple out of the four measurements in (4) areThe IF observation model can be obtained combining (4), (6), and (7) which yieldsSince the observation types are assumed to be independent, assuming white Gaussian measurements noises, the IF combinations are affected by Gaussian white noise with varianceHence, the noise is increased compared to the original uncombined observations.

##### 3.3. GRAPHIC Combinations

GRAPHIC combinations exploit the asymmetry of the ionospheric effect on group and phase propagation [22]. In practice, they combine pseudorange and carrier-phase measurements on each frequency, as follows:From the above equations, the GRAPHIC observation model and variance readwhere , indicate the noise terms of and combinations, respectively.

##### 3.4. Melbourne-Wubbena Combinations

Melbourne-Wubbena (MW) combinations combine all four observable types for cancelling out the ionospheric delay [23, 24]. They build upon the definition of the wide and narrow lane (NL) wavelengths:where is the speed of light in vacuum. The MW combinations are obtained asand have the following observation model and variance:where represents the noise term of the combination.

#### 4. Ionosphere-Free Relative Positioning

This section is concerned with establishing which of the measurement combinations presented in Section 3 is suitable for computing the relative position of the two receivers in long baseline applications. The measurement combinations available with no ionospheric effects are the combinations, the combinations, the GRAPHIC combinations on L1 and L2, and the MW combinations, for a total of measurements. However, the measurements are not linearly independent. In particular, each group of 5 observables per each of the DD couples can be seen as a linear transformation of the 4 uncombined measurements of (4). More precisely, the cancellation of the ionosphere from (4) can be seen as a linear projection of the 4-dimensional measurement vector onto a 3-dimensional hyperplane. This implies that no more than three linear combinations of the four dimensional vector exist being linearly independent, and thus suitable for use as measurement vector in an EKF. In addition, whatever set of three linearly independent vectors lying on the hyperplane can be used as a basis for describing all the vectors belonging to the hyperplane. Even though any of such bases would yield theoretically equivalent positioning solutions, significant differences exist in practical applications due to unmodeled systematic errors. In order to find such “best” basis, its performance in accurately estimating both the geometric term and the cycle ambiguity is analyzed. A natural indicator to evaluate the accuracy achieved by a specific measurement combination is the standard deviation (STD) of the noise affecting the measurements.

Hence, a specific analysis has been performed. Starting from different candidate noise levels for the uncombined measurements, that is, , , , and (see the first three columns in Table 1), reflecting typical performance of spaceborne GPS receivers, the expected STD for the estimation of the geometric term is derived as listed in Table 1. The rationale of this analysis is that different combinations of GPS measurements may modify, that is either amply or reduce, the uncertainty of the geometric term. Combinations able to reduce this uncertainty should be preferred for implementation in an ionosphere-free EKF. The same analysis is then repeated for the integer ambiguity on L1. Again, the smaller the uncertainty on this ambiguity, the larger the probability to correctly fix it. The results are shown in Table 2. In this case, a scale factor is introduced to represent the STD of combined measurements as a fraction of L1 cycles. In addition to this theoretical analysis, the dispersion of actual GRACE data is computed and the relevant STD is calculated (see the last row in Tables 1 and 2) for gaining further insight into the true-world accuracy of the various combinations.