Table of Contents Author Guidelines Submit a Manuscript
International Journal of Aerospace Engineering
Volume 2016, Article ID 2759121, 8 pages
http://dx.doi.org/10.1155/2016/2759121
Research Article

Simulation and Analysis of Spectral Response Function and Bandwidth of Spectrometer

1Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China
2University of Chinese Academy of Sciences, Beijing 100049, China

Received 26 April 2016; Accepted 3 October 2016

Academic Editor: Andreas Ehn

Copyright © 2016 Zhenyu Gao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

A simulation method for acquiring spectrometer’s Spectral Response Function (SRF) based on Huygens Point Spread Function (PSF) is suggested. Taking into account the effects of optical aberrations and diffraction, the method can obtain the fine SRF curve and corresponding spectral bandwidth at any nominal wavelength as early as in the design phase. A prism monochromator is proposed for illustrating the simulation procedure. For comparison, a geometrical ray-tracing method is also provided, with bandwidth deviations varying from 5% at 250 nm to 25% at 2400 nm. Further comparison with reported experiments shows that the areas of the SRF profiles agree to about 1%. However, the weak scattered background light on the level of 10−4 to 10−5 observed by experiment could not be covered by this simulation. This simulation method is a useful tool for forecasting the performance of an underdesigned spectrometer.