Table of Contents Author Guidelines Submit a Manuscript
International Journal of Aerospace Engineering
Volume 2016, Article ID 7816912, 10 pages
http://dx.doi.org/10.1155/2016/7816912
Research Article

Sandwich Structured Composites for Aeronautics: Methods of Manufacturing Affecting Some Mechanical Properties

1Aeronautics Faculty, Polish Air Force Academy, Ulica Dywizjonu 303, No. 35, 08-521 Dęblin, Poland
2Mechanical Engineering Faculty, Lublin University of Technology, Ulica Nadbystrzycka 36, 20-618 Lublin, Poland

Received 9 February 2016; Revised 10 May 2016; Accepted 16 May 2016

Academic Editor: Linda L. Vahala

Copyright © 2016 Aneta Krzyżak et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. C. Campbell, Manufacturing Technology for Aerospace Structural Materials, Elsevier, London, UK, 2006.
  2. A. Krzyżak and D. Vališ, “Selected safety aspects of polymer composites with natural fibres,” in Safety and Reliability: Methodology and Applications, T. Nowakowski, M. Młyńczak, A. Jodejko-Pietruczuk, and S. Werbińska-Wojciechowska, Eds., pp. 903–909, Taylor & Francis Group, London, UK, 2015. View at Google Scholar
  3. M. Landowski, M. K. Budzik, and K. Imielińska, “Wpływ metody wytwarzania na właściwości laminatów poliestrowo/szklanych do budowy małych jednostek pływających,” Inżynieria Materiałowa, vol. 5, pp. 868–872, 2001. View at Google Scholar
  4. ASTM Standard C 274-99, Standard Terminology of Structural Sandwich Constructions, American Society for Testing Materials, 2000.
  5. A. I. Boczkowska, Kompozyty, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, Poland, 2003.
  6. W. Królikowski, Polimerowe Kompozyty Konstrukcyjne, Wydawnictwo Naukowe PWN, Warszawa, Poland, 2012.
  7. H. Leda, Kompozyty Polimerowe z Włóknami Ciągłymi: Wytwarzanie, Właściwości, Stosowanie, Wydawnictwo Politechniki Poznańskiej, Poznań, Poland, 2006.
  8. D. Żuchowska, Polimery Konstrukcyjne, Wydawnictwo Naukowo Techniczne, Warszawa, Poland, 2000.
  9. F. C. Campbell, Structural Composite Materials, ASM International, Novelty, Ohio, 2010.
  10. A. Muc and R. Nogowczyk, “Formy zniszczenia konstrukcji sandwiczowych z okładzinami wykonanymi z kompozytów,” Composites, vol. 5, no. 4, pp. 31–36, 2005. View at Google Scholar
  11. S. Ochelski and T. Niezgoda, “Kompozytowe konstrukcje pochłaniające energię uderzenia,” Przegląd Mechaniczny, vol. 1, pp. 21–28, 2007. View at Google Scholar
  12. F. C. Campbell, Manufacturing Processes for Advanced Composites, Elsevier, London, UK, 2004.
  13. M. A. Dweib, B. Hu, A. O'Donnell, H. W. Shenton, and R. P. Wool, “All natural composite sandwich beams for structural applications,” Composite Structures, vol. 63, no. 2, pp. 147–157, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Jüngert, “Damage detection in wind turbine blades using two different acoustic techniques,” in Proceedings of the 7th fib PhD Symposium, Journal of Nondestructive Testing, Stuttgart, Germany, September 2008.
  15. A. P. Mouritz and A. G. Gibson, Fire Properties of Polymer Composite Materials, Springer, 2006.
  16. L. J. Gibson and M. F. Ashby, Cellular Solids. Structure and Properties, Cambridge University Press, 1997.
  17. R. Wojtyra and K. Imielińska, “Badania pękania udarowego w konstrukcjach przekładkowych poliestrowo-szklanych z rdzeniem z pianki PVC,” Kompozyty, vol. 7, no. 3, pp. 140–144, 2007. View at Google Scholar
  18. H. Ning, G. M. Janowski, U. K. Vaidya, and G. Husman, “Thermoplastic sandwich structure design and manufacturing for the body panel of mass transit vehicle,” Composite Structures, vol. 80, no. 1, pp. 82–91, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. A. G. Mamalis, K. N. Spentzas, N. G. Pantelelis, D. E. Manolakos, and M. B. Ioannidis, “A new hybrid concept for sandwich structures,” Composite Structures, vol. 83, no. 4, pp. 335–340, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. ASTM, “Standard test method for flatwise compressive properties of sandwich cores,” ASTM Standard C 365-03, American Society for Testing Materials, 2005. View at Google Scholar
  21. ASTM Standard C 393-00, Standard Test Method for Flexural Properties of Sandwich Constructions, American Society for Testing Materials, 2000.
  22. T. S. Gates, X. Su, F. Abdi, G. M. Odegard, and H. M. Herring, “Facesheet delamination of composite sandwich materials at cryogenic temperatures,” Composites Science and Technology, vol. 66, no. 14, pp. 2423–2435, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. ISO, “Composite materials reinforced with fiber. Marking properties at flexural test,” PN-EN ISO 14125:2001, ISO, 2001. View at Google Scholar
  24. ISO, “Marking impact by means of Charpy's method,” PN-EN ISO 179:2001, 2001. View at Google Scholar
  25. J. Christopherson, M. Mahinfalah, G. N. Jazar, and M. R. Aagaah, “An investigation on the effect of a small mass impact on sandwich composite plates,” Composite Structures, vol. 67, no. 3, pp. 299–306, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Blicharski, Inżynieria Materiałowa, Wydawnictwo Naukowo-Techniczne, Warszawa, Poland, 2014.
  27. S. Y. Shen, F. J. Masters, H. L. Upjohn, and C. C. Ferraro, “Mechanical resistance properties of FRP/polyol-isocyanate foam sandwich panels,” Composite Structures, vol. 99, pp. 419–432, 2013. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Osei-Antwi, J. De Castro, A. P. Vassilopoulos, and T. Keller, “Shear mechanical characterization of balsa wood as core material of composite sandwich panels,” Construction and Building Materials, vol. 41, pp. 231–238, 2013. View at Publisher · View at Google Scholar · View at Scopus
  29. F. Avilés and M. Aguilar-Montero, “Mechanical degradation of foam-cored sandwich materials exposed to high moisture,” Composite Structures, vol. 92, no. 1, pp. 122–129, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Corigliano, E. Rizzi, and E. Papa, “Experimental characterization and numerical simulations of a syntactic-foam/glass-fibre composite sandwich,” Composites Science and Technology, vol. 60, no. 11, pp. 2169–2180, 2000. View at Publisher · View at Google Scholar · View at Scopus
  31. G. Belingardi, M. P. Cavatorta, and R. Duella, “Material characterization of a composite-foam sandwich for the front structure of a high speed train,” Composite Structures, vol. 61, no. 1-2, pp. 13–25, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. A. C. Manalo, “Behaviour of fibre composite sandwich structures under short and asymmetrical beam shear tests,” Composite Structures, vol. 99, pp. 339–349, 2013. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Feng and F. Aymerich, “Damage prediction in composite sandwich panels subjected to low-velocity impact,” Composites Part A: Applied Science and Manufacturing, vol. 52, pp. 12–22, 2013. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Mostafa, K. Shankar, and E. V. Morozov, “Insight into the shear behaviour of composite sandwich panels with foam core,” Materials and Design, vol. 50, pp. 92–101, 2013. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Qiao and M. Yang, “Impact analysis of fiber reinforced polymer honeycomb composite sandwich beams,” Composites Part B: Engineering, vol. 38, no. 5-6, pp. 739–750, 2007. View at Publisher · View at Google Scholar · View at Scopus