Table of Contents Author Guidelines Submit a Manuscript
International Journal of Aerospace Engineering
Volume 2017, Article ID 9734164, 10 pages
https://doi.org/10.1155/2017/9734164
Research Article

Autonomous Orbit Determination for Lagrangian Navigation Satellite Based on Neural Network Based State Observer

1College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing, China
2College of Astronomy and Space Science, Nanjing University, Nanjing, China

Correspondence should be addressed to Youtao Gao; nc.ude.aaun@oagty

Received 1 March 2017; Revised 11 May 2017; Accepted 24 May 2017; Published 21 June 2017

Academic Editor: Paolo Tortora

Copyright © 2017 Youtao Gao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. H. Battin, An Introduction to the Mathematics and Methods of Astrodynamics, American Institute of Aeronautics and Astronautics, Reston, VA, USA, 1999. View at MathSciNet
  2. S. Bhaskaran, J. E. Riedel, S. P. Synnott, and T. C. Wang, “The deep space 1 autonomous navigation system: a post-flight analysis,” in Proceedings of the AIAA/AAS Astrodynamics Specialist Conference, AIAA-2000-3935, Denver, CO, USA, 2000. View at Publisher · View at Google Scholar
  3. N. Mastrodemos, D. G. Kubitschek, and S. P. Synnott, “Autonomous navigation for the deep impact mission encounter with comet tempel 1,” Space Science Reviews, vol. 117, no. 1, pp. 95–121, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. G. S. Downs, “Interplanetary Navigation Using Pulsating Radio Sources,” Tech. Rep., NASA Technical Reports, 1974, N74-34150/4. View at Google Scholar
  5. S. I. Sheikh, D. J. Pines, P. S. Ray, K. S. Wood, M. N. Lovellette, and M. T. Wolff, “Spacecraft navigation using X-ray pulsars,” Journal of Guidance, Control, and Dynamics, vol. 29, no. 1, pp. 49–63, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. K. A. Hill, Autonomous Navigation in Libration Point Orbits [Ph.D. thesis], University of Colorado, Colorado, USA, 2007, Ph.D. dissertation.
  7. L. Zhang and B. Xu, “A universe light house—candidate architectures of the libration point satellite navigation system,” Journal of Navigation, vol. 67, no. 5, pp. 737–752, 2014. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Zhang and B. Xu, “Navigation performance of the libration point satellite navigation system in cislunar space,” Journal of Navigation, vol. 68, no. 2, pp. 367–382, 2015. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Zhang and B. Xu, “Navigation performance of the libration point satellite navigation system for future Mars exploration,” Journal of Navigation, vol. 69, no. 1, pp. 41–56, 2016. View at Publisher · View at Google Scholar · View at Scopus
  10. Y.-J. Qian, W.-X. Jing, C.-S. Gao, and W.-S. Wei, “Autonomous orbit determination for quasi-periodic orbit about the translunar libration point,” Journal of Astronautics, vol. 34, no. 5, pp. 625–633, 2013. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Du, Z. K. Zhang, L. Yu, and S. J. Chen, “SST orbit determination of halo-lmo constellation in CRTBP,” Acta Geodaetica et Cartographica Sinica, pp. 184–190, 2013. View at Google Scholar · View at Scopus
  12. Y. T. Gao, B. Xu, and L. Zhang, “Feasibility study of autonomous orbit determination using only the crosslink range measurement for a combined navigation constellation,” Chinese Journal of Aeronautics, vol. 27, no. 5, pp. 1199–1210, 2014. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Liu and X. Y. Hou, Deep Space Probe Orbit Mechanics, Publishing House of Electronics Industry, Beijing, China, 2012.
  14. M. Ollé and J. R. Pacha, “The 3D elliptic restricted three-body problem: periodic orbits which bifurcate from limiting restricted problems,” Astronomy and Astrophysics, vol. 351, pp. 1149–1164, 1999. View at Google Scholar · View at Scopus
  15. J. M. Cors, C. Pinyol, and J. Soler, “Periodic solutions in the spatial elliptic restricted three-body problem,” Physica D: Nonlinear Phenomena, vol. 154, no. 3-4, pp. 195–206, 2001. View at Publisher · View at Google Scholar · View at MathSciNet
  16. J. Singh and A. Umar, “Motion in the photogravitational elliptic restricted three-body problem under an oblate primary,” The Astronomical Journal, vol. 143, no. 5, article 109, 22 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. N. Harl, K. Rajagopal, and S. N. Balakrishnan, “Neural network based modified state observer for orbit uncertainty estimation,” Journal of Guidance, Control, and Dynamics, vol. 36, no. 4, pp. 1194–1209, 2013. View at Publisher · View at Google Scholar · View at Scopus
  18. V. Szebehely, Theory of Orbits, Academic Press, New York, USA, 1967. View at Publisher · View at Google Scholar
  19. H. Lei, B. Xu, X. Hou, and Y. Sun, “High-order solutions of invariant manifolds associated with libration point orbits in the elliptic restricted three-body system,” Celestial Mechanics and Dynamical Astronomy, vol. 117, no. 4, pp. 349–384, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  20. X. Y. Hou and L. Liu, “On motions around the collinear libration points in the elliptic restricted three-body problem,” Monthly Notices of the Royal Astronomical Society, vol. 415, no. 4, pp. 3552–3560, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Ioannou and J. Sun, Robust Adaptive Control, Prentice-Hall, Englewood Cliffs, NJ, USA, 1996.