Table of Contents
International Journal of Antibiotics
Volume 2014, Article ID 586252, 5 pages
http://dx.doi.org/10.1155/2014/586252
Research Article

Comparative Evaluation of the Inhibitory Effect of Some Essential Oils with Antibiotics against Pseudomonas aeruginosa

1Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Egypt
2Department of Food Microbiology, National Research Center, Dokki, Cairo, Egypt
3Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Egypt

Received 29 June 2014; Revised 24 September 2014; Accepted 24 September 2014; Published 1 October 2014

Academic Editor: Branka Bedenić

Copyright © 2014 Lobna El-Hosseiny et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Center for Disease Control (CDC), Antibiotic Resistance Threats in the United States, 2013, 2013.
  2. G. M. Rossolini and E. Mantengoli, “Treatment and control of severe infections caused by multiresistant Pseudomonas aeruginosa,” Clinical Microbiology and Infection, vol. 11, no. s4, pp. 17–32, 2005. View at Google Scholar · View at Scopus
  3. B. Marquez, L. Neuville, N. J. Moreau et al., “Multidrug resistance reversal agent from Jatropha elliptica,” Phytochemistry, vol. 66, no. 15, pp. 1804–1811, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. E. C. J. Smith, E. M. Williamson, N. Wareham, G. W. Kaatz, and S. Gibbons, “Antibacterials and modulators of bacterial resistance from the immature cones of Chamaecyparis lawsoniana,” Phytochemistry, vol. 68, no. 2, pp. 210–217, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. R. P. Adams, Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, Allured Publishing Corporation, Carol Stream, Ill, USA, 4th edition, 2007.
  6. Clinical and Laboratory Standards Institute (CLSI), “Performance standards for antimicrobial susceptibility testing; twenty-first informational supplement,” Tech. Rep. M100 -S21, Clinical and Laboratory Standards Institute, Wayne, Pa, USA, 2011. View at Google Scholar
  7. W. A. El-Shouny and S. Magaam, “Sensitivity of Multi-drug Resistant Pseudomonas aeruginosa isolated from surgical wound-infections to essential oils and plant Extracts,” World Journal of medical Sciences, vol. 4, pp. 104–111, 2009. View at Google Scholar
  8. T. Bosnic, D. Softic, and J. G. Vasic, “Antimicrobial activity of some essential oils and major constituents of essential oils,” Acta Medica Academica, vol. 35, pp. 19–22, 2006. View at Google Scholar
  9. R. Santos Pereira, T. C. Sumita, M. R. Furlan, A. O. Cardoso Jorge, and M. Ueno, “Antibacterial activity of essential oils on microorganisms isolated from urinary tract infection,” Revista de Saude Publica, vol. 38, no. 2, pp. 326–328, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Di Pasqua, V. de Feo, F. Villani, and G. Mauriello, “In vitro antimicrobial activity of essential oils from Mediterranean Apiaceae, Verbenaceae and Lamiaceae against foodborne pathogens and spoilage bacteria,” Annals of Microbiology, vol. 55, no. 2, pp. 139–143, 2005. View at Google Scholar · View at Scopus
  11. P. D. Lister, D. J. Wolter, and N. D. Hanson, “Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms,” Clinical Microbiology Reviews, vol. 22, no. 4, pp. 582–610, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. J. C. Pechere and T. Kohler, “Patterns and modes of β-lactam resistance in Pseudomonas aeruginosa,” Clinical Microbiology and Infection, vol. 5, no. 1, pp. S15–S18, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Strateva and D. Yordanov, “Pseudomonas aeruginosa: a phenomenon of bacterial resistance,” Journal of Medical Microbiology, vol. 58, no. 9, pp. 1133–1148, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Djilani and A. Dick, The Therapeutic Benefits of Essential Oils, Nutrition, Well-Being and Health, 2012.
  15. I. H. N. Bassolé and H. R. Juliani, “Essential oils in combination and their antimicrobial properties,” Molecules, vol. 17, no. 4, pp. 3989–4006, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Hyldgaard, T. Mygind, and R. L. Meyer, “Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components,” Frontiers in Microbiology, vol. 3, article 12, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. R. di Pasqua, G. Mamone, P. Ferranti, D. Ercolini, and G. Mauriello, “Changes in the proteome of Salmonella enterica serovar Thompson as stress adaptation to sublethal concentrations of thymol,” Proteomics, vol. 10, no. 5, pp. 1040–1049, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Xu, F. Zhou, B.-P. Ji, R.-S. Pei, and N. Xu, “The antibacterial mechanism of carvacrol and thymol against Escherichia coli,” Letters in Applied Microbiology, vol. 47, no. 3, pp. 174–179, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. G. O. Onawunmi, W.-A. Yisak, and E. O. Ogunlana, “Antibacterial constituents in the essential oil of Cymbopogon citratus (DC.) Stapf.,” Journal of Ethnopharmacology, vol. 12, no. 3, pp. 279–286, 1984. View at Publisher · View at Google Scholar · View at Scopus
  20. C. F. Carson and T. V. Riley, “Antimicrobial activity of the essential oil of Melaleuca alternifolia,” Letters in Applied Microbiology, vol. 16, no. 2, pp. 49–55, 1993. View at Publisher · View at Google Scholar · View at Scopus
  21. C. F. Carson and T. V. Riley, “Antimicrobial activity of the major components of the essential oil of Melaleuca alternifolia,” Journal of Applied Bacteriology, vol. 78, no. 3, pp. 264–269, 1995. View at Publisher · View at Google Scholar · View at Scopus
  22. S. G. Griffin, S. G. Wyllie, J. L. Markham, and D. N. Leach, “The role of structure and molecular properties of terpenoids in determining their antimicrobial activity,” Flavour and Fragrance Journal, vol. 14, no. 5, pp. 322–332, 1999. View at Google Scholar
  23. J. E. C. Betoni, R. P. Mantovani, L. N. Barbosa, L. C. di Stasi, and A. Fernandes Jr., “Synergism between plant extract and antimicrobial drugs used on Staphylococcus aureus diseases,” Memorias do Instituto Oswaldo Cruz, vol. 101, no. 4, pp. 387–390, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Hemaiswarya, A. K. Kruthiventi, and M. Doble, “Synergism between natural products and antibiotics against infectious diseases,” Phytomedicine, vol. 15, no. 8, pp. 639–652, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Dryselius, N. Nekhotiaeva, and L. Good, “Antimicrobial synergy between mRNA- and protein-level inhibitors,” Journal of Antimicrobial Chemotherapy, vol. 56, no. 1, pp. 97–103, 2005. View at Publisher · View at Google Scholar · View at Scopus