Table of Contents Author Guidelines Submit a Manuscript
International Journal of Analysis
Volume 2013, Article ID 524264, 7 pages
http://dx.doi.org/10.1155/2013/524264
Research Article

Moment Problems on Bounded and Unbounded Domains

Department of Mathematics-Informatics, Faculty of Applied Sciences, University Politehnica of Bucharest, 060042 Bucharest, Romania

Received 14 September 2012; Accepted 29 November 2012

Academic Editor: Zhijun Qiao

Copyright © 2013 Octav Olteanu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. I. Akhiezer, The Classical Moment Problem and Some Related Questions in Analysis, Oliver and Boyd, Edinburgh, UK, 1965. View at Zentralblatt MATH
  2. C. Ambrozie and O. Olteanu, “A sandwich theorem, the moment problem, finite-simplicial sets and some inequalities,” Revue Roumaine de Mathématique Pures et Appliquées, vol. 49, pp. 189–210, 2004. View at Google Scholar · View at Zentralblatt MATH
  3. G. Choquet, “Le problème des moments,” in Séminaire d’Initiation à l’Analise, Institut H. Poicaré, Paris, France, 1962. View at Google Scholar
  4. M. G. Krein and A. A. Nudelman, Markov Moment Problem and Extremal Problems, American Mathematical Society, Providence, RI, USA, 1977.
  5. L. Lemnete-Ninulescu, “Using the solution of an abstract moment problem to solve some classical complex moment problems,” Romanian Journal of Pure and Applied Mathematics, vol. 51, pp. 703–711, 2006. View at Google Scholar · View at Zentralblatt MATH
  6. J. M. Mihăilă, O. Olteanu, and C. Udrişte, “Markov-type and operator-valued multidimensional moment problems, with some applications,” Romanian Journal of Pure and Applied Mathematics, vol. 52, pp. 405–428, 2007. View at Google Scholar · View at Zentralblatt MATH
  7. J. M. Mihăilă, O. Olteanu, and C. Udrişte, “Markov-type moment problems for arbitrary compact and for some non-compact Borel subsets of Rn,” Romanian Journal of Pure and Applied Mathematics, vol. 52, pp. 655–664, 2007. View at Google Scholar · View at Zentralblatt MATH
  8. A. Olteanu and O. Olteanu, “Some unexpected problems of the moment problem,” in Proceedings of the 6th Congress of Romanian Mathematicians, vol. 1, pp. 347–355, Academiei, 2010.
  9. O. Olteanu, “Application de théorèmes de prolongement d’opérateurs linéaires au problème des moments et à une generalisation d’un théorème de Mazur-Orlicz,” Comptes Rendus de l'Académie des Sciences Série I, vol. 313, pp. 739–742, 1991. View at Google Scholar · View at Zentralblatt MATH
  10. O. Olteanu, “Applications of a general sandwich theorem for operators to the moment problem,” Revue Roumaine de Mathématique Pures et Appliquées, no. 2, pp. 513–521, 1996. View at Google Scholar · View at Zentralblatt MATH
  11. O. Olteanu, “New aspects of the classical moment problem,” Romanian Journal of Pure and Applied Mathematics, vol. 49, pp. 63–77, 2004. View at Google Scholar · View at Zentralblatt MATH
  12. R. Cristescu, Ordered Vector Spaces and Linear Operators, Academiei, Bucharest and Abacus Press, Kent, UK, 1976.
  13. H. H. Schaefer, Topological Vector Spaces, Springer, New York, NY, USA, 1971.
  14. O. Olteanu, “Convexité et prolongement d’opérateurs linéaires,” Comptes Rendus de l'Académie des Sciences, Série A, vol. 286, pp. 511–514, 1978. View at Google Scholar · View at Zentralblatt MATH
  15. O. Olteanu, “Théorèmes de prolongement d’opérateurs linéaires,” Revue Roumaine de Mathématique Pures et Appliquées, vol. 28, no. 10, pp. 953–983, 1983. View at Google Scholar · View at Zentralblatt MATH
  16. C. Berg, J. P. R. Christensen, and C. U. Jensen, Harmonic Analysis on Semigroups: Theory of Positive Definite and Related Functions, Springer, New York, NY, USA, 1984. View at Publisher · View at Google Scholar
  17. B. Fuglede, “The multidimensional moment problem,” Expositiones Mathematicae, vol. 1, pp. 47–65, 1983. View at Google Scholar · View at Zentralblatt MATH
  18. C. Kleiber and J. Stoyanov, “Multivariate distributions and the moment problem,” Journal of Multivariate Analysis, vol. 113, pp. 7–18, 2013. View at Publisher · View at Google Scholar
  19. J. Stoyanov, “Stieltjes classes for moment-indeterminate probability distributions,” Journal of Applied Probability, vol. 41, no. 1, pp. 281–294, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  20. C. Berg and A. J. Durán, “The fixed point for a transformation of Hausdorff moment sequences and iteration of a rational function,” Mathematica Scandinavica, vol. 103, no. 1, pp. 11–39, 2008. View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  21. M. Putinar and F. H. Vasilescu, “Problème des moments sur les compacts semi-algébriques,” Comptes Rendus de l'Académie des Sciences Série I, vol. 323, pp. 787–791, 1996. View at Google Scholar · View at Zentralblatt MATH