Table of Contents Author Guidelines Submit a Manuscript
International Journal of Analysis
Volume 2014, Article ID 195329, 7 pages
http://dx.doi.org/10.1155/2014/195329
Research Article

Some Remarks on the Self-Exponential Function: Minimum Value, Inverse Function, and Indefinite Integral

Departamento de Ciencias Experimentales y Matemáticas, Universidad Católica de Valencia “San Vicente Mártir”, C/Guillem de Castro 96, 46001 Valencia, Spain

Received 9 September 2014; Accepted 10 November 2014; Published 23 November 2014

Academic Editor: Shamsul Qamar

Copyright © 2014 J. L. González-Santander and G. Martín. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Oldham, J. Myland, and J. Spanier, An Atlas of Functions, Springer, New York, NY, USA, 2nd edition, 2008. View at Publisher · View at Google Scholar · View at MathSciNet
  2. J. A. Fantini and G. C. Kloepfer, The Coupled Exponential, 1998, http://eretrandre.org/rb/files/JayFantini1998_203.pdf.
  3. G. H. Hardy, Orders of Infinity, Cambridge Press, England, UK, 1910.
  4. M. D. Meyerson, “The xx spindle,” Mathematics Magazine, vol. 69, no. 3, pp. 198–206, 1996. View at Publisher · View at Google Scholar · View at MathSciNet
  5. R. M. Corless, G. H. Gonnet, D. E. Hare, D. J. Jeffrey, and D. E. Knuth, “On the Lambert W function,” Advances in Computational Mathematics, vol. 5, no. 4, pp. 329–359, 1996. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  6. I. N. Galidakis and E. W. Weisstein, “Power Tower,” Math World-Wolfram Web Resources, http://mathworld.wolfram.com/PowerTower.html.
  7. L. Euler, “De serie Lambertina Plurimisque eius insignibus proprietatibus,” Acta Academiae Scientarum Imperialis Petropolitinae, vol. 2, pp. 29–51, 1783, Reprinted in L. Euler, Opera Omnia, Series Prima, Volume 6: Commentationes Algebraicae, pp. 350–369. View at Google Scholar
  8. G. Eisenstein, “Entwicklung von ααα,” Journal für die Reine und Angewandte Mathematik, vol. 28, pp. 49–52, 1844. View at Google Scholar
  9. F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, Eds., NIST Handbook of Mathematical Functions, Cambridge University Press, New York, NY, USA, 2010.
  10. E. A. Marchisotto and G.-A. Zakeri, “An invitation to integration in finite terms,” College Mathematics Journal, vol. 25, pp. 295–308, 1994. View at Google Scholar
  11. I. N. Galidakis, “On an application of Lambert's W function to infinite exponentials,” Complex Variables. Theory and Application, vol. 49, no. 11, pp. 759–780, 2004. View at Publisher · View at Google Scholar · View at MathSciNet
  12. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, New York, NY, USA, 7th edition, 2007. View at MathSciNet
  13. J. Borwein, D. Bailey, and R. Girgensohn, Experimentation in Mathematics: Computational Paths to Discovery, A K Peters, Wellesley, Mass, USA, 2004.