Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2012 (2012), Article ID 282159, 7 pages
http://dx.doi.org/10.1155/2012/282159
Research Article

FDTD-SPICE for Characterizing Metamaterials Integrated with Electronic Circuits

Electrical and Computer Engineering Department, Northeastern University, Boston, MA 02115, USA

Received 24 April 2012; Revised 20 July 2012; Accepted 25 July 2012

Academic Editor: Alejandro Lucas Borja

Copyright © 2012 Zhengwei Hao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. A. Powell, I. V. Shadrivov, Y. S. Kivshar, and M. V. Gorkunov, “Self-tuning mechanisms of nonlinear split-ring resonators,” Applied Physics Letters, vol. 91, no. 14, Article ID 144107, 3 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. I. V. Shadrivov, A. B. Kozyrev, D. W. Van Der Weide, and Y. S. Kivshar, “Tunable transmission and harmonic generation in nonlinear metamaterials,” Applied Physics Letters, vol. 93, no. 16, Article ID 161903, 3 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Huang, E. Poutrina, and D. R. Smith, “Analysis of the power dependent tuning of a varactor-loaded metamaterial at microwave frequencies,” Applied Physics Letters, vol. 96, no. 10, Article ID 104104, 3 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. I. V. Shadrivov, S. K. Morrison, and Y. S. Kivshar, “Tunable split-ring resonators for nonlinear negative-index metamaterials,” Optics Express, vol. 14, no. 20, pp. 9344–9349, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Saadat, M. Adnan, H. Mosallaei, and E. Afshari, “Composite Metamaterial and Metasurface Integrated with Non-Foster Active Circuit Elements: A Bandwidth-Enhancement Investigation,” IEEE Transactions on Antennas and Propagation. In press.
  6. T. Jiang, K. Chang, L.-M. Si, L. Ran, and H. Xin, “Active microwave negative-index metamaterial transmission line with gain,” Physical Review Letters, vol. 107, no. 20, Article ID 205503, 5 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. D. J. Kern, D. H. Werner, and M. J. Wilhelm, “Active negative impedance loaded EBG structures for the realization of ultra-wideband artificial magnetic conductors,” in Proceedings of the IEEE International Antennas and Propagation Symposium and USNC/CNC/URSI North American Radio Science Meeting, vol. 2, pp. 427–430, June 2003. View at Scopus
  8. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, House, Norwood, Mass, USA, 3rd edition, 2005.
  9. H. Mosallaei and Y. Rahmat-Samii, “Broadband characterization of complex periodic EBG structures: an FDTD/Prony technique based on the split-field approach,” Electromagnetics, vol. 23, no. 2, pp. 135–151, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. http://bwrc.eecs.berkeley.edu/classes/icbook/spice/.
  11. V. A. Thomas, M. E. Jones, M. Piket-May, A. Taflove, and E. Harrigan, “Use of SPICE lumped circuits as sub-grid models for FDTD analysis,” IEEE Microwave and Guided Wave Letters, vol. 4, no. 5, pp. 141–143, 1994. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Kobidze, A. Nishizawa, and S. Tanabe, “Ground bouncing in PCB with integrated circuits,” in Proceedings of the IEEE International Symposium on Electromagneti Compatibility, vol. 1, pp. 349–352, August 2000. View at Scopus
  13. N. Orhanovic, R. Raghuram, and N. Matsui, “Full wave analysis of planar interconnect structures using FDTD-SPICE,” in Proceedings of the 51st Electronic Components and Technology Conference, pp. 489–494, June 2001. View at Scopus
  14. H. Mosallaei, “FDTD-PLRC technique for modeling of anisotropic-dispersive media and metamaterial devices,” IEEE Transactions on Electromagnetic Compatibility, vol. 49, no. 3, pp. 649–660, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Fujii, M. Tahara, I. Sakagami, W. Freude, and P. Russer, “High-order FDTD and auxiliary differential equation formulation of optical pulse propagation in 2-D Kerr and Raman nonlinear dispersive media,” IEEE Journal of Quantum Electronics, vol. 40, no. 2, pp. 175–182, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. J. A. Roden and S. D. Gedney, “Convolutional PML (CPML): an efficient FDTD implementation of the CFS-PML for arbitrary media,” Microwave and Optical Technology Letters, vol. 27, pp. 334–339, 2000. View at Google Scholar
  17. H. Mosallaei and Y. Rahmat-Samii, “Periodic bandgap and effective dielectric materials in electromagnetics: characterization and applications in nanocavities and waveguides,” IEEE Transactions on Antennas and Propagation, vol. 51, no. 3, pp. 549–563, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Mosallaei and K. Sarabandi, “Magneto-dielectrics in electromagnetics: concept and applications,” IEEE Transactions on Antennas and Propagation, vol. 52, no. 6, pp. 1558–1567, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Mosallaei and K. Sarabandi, “Design and modeling of patch antenna printed on magneto-dielectric embedded-circuit metasubstrate,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 1, pp. 45–52, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. W. Jendernalik, “A low-voltage CMOS negative impedance converter for analogue filtering applications,” Bulletin of the Polish Academy of Sciences, vol. 55, no. 4, pp. 419–423, 2007. View at Google Scholar · View at Scopus
  21. R. M. Rudish and S. E. Sussman-Fort, “Progress in use of non-Foster impedances to. match electrically-small antennas and arrays,” in Proceedings of the Antenna Applications Symposium, pp. 89–108, Allerton Park, Ill, USA, September 2005.
  22. P. Jin and R. W. Ziolkowski, “Broadband, efficient, electrically small metamaterial-inspired antennas facilitated by active near-field resonant parasitic elements,” IEEE Transactions on Antennas and Propagation, vol. 58, no. 2, pp. 318–327, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Hrabar, I. Krois, and A. Kiricenko, “Towards active dispersionless ENZ metamaterial for cloaking applications,” Metamaterials, vol. 4, no. 2-3, pp. 89–97, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. J. G. Linvill, “Transistor negative-impedance converters,” Proceedings of the IRE, vol. 41, pp. 725–729, 1953. View at Google Scholar
  25. H. Mosallaei and K. Sarabandi, “Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate,” IEEE Transactions on Antennas and Propagation, vol. 52, no. 9, pp. 2403–2414, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. Skywork’s SMV1232-079 datasheet.