Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2012, Article ID 392308, 10 pages
http://dx.doi.org/10.1155/2012/392308
Research Article

An Automatic Framework Using Space-Time Processing and TR-MUSIC for Subsurface and Through-Wall Multitarget Imaging

Department of Electronic Information Engineering, Nanchang University, Jiangxi, Nanchang 330031, China

Received 3 February 2012; Revised 11 June 2012; Accepted 18 July 2012

Academic Editor: Weng Cho Chew

Copyright © 2012 Si-hao Tan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. J. Kim, L. Jofre, F. De Flaviis, and M. Q. Feng, “Microwave reflection tomographic array for damage detection of civil structures,” IEEE Transactions and Antennas Propagation, vol. 51, no. 11, pp. 3022–3032, 2003. View at Google Scholar
  2. F. Soldovieri and R. Solimene, “Through-wall imaging via a linear inverse scattering algorithm,” IEEE Geoscience and Remote Sensing Letters, vol. 4, no. 4, pp. 513–517, 2007. View at Google Scholar
  3. E. Pasolli, F. Melgani, and M. Donelli, “Gaussian process approach to buried object size estimation in GPR images,” IEEE Geoscience and Remote Sensing Letters, vol. 7, no. 1, pp. 141–145, 2010. View at Google Scholar
  4. R. Firoozabadi, E. L. Miller, C. M. Rappaport, and A. W. Morgenthaler, “Subsurface sensing of buried objects under a randomly rough surface using scattered electromagnetic field data,” IEEE Transactions on Geoscience and Remote Sensing, vol. 45, no. 1, pp. 104–117, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Pasolli, F. Melgani, and M. Donelli, “Automatic analysis of GPR images: a pattern-recognition approach,” IEEE Transactions on Geoscience and Remote Sensing, vol. 47, no. 7, pp. 2206–2217, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. W. Zhang and A. Hoorfar, “Two-dimensional through-the-wall radar imaging with diffraction tomographic algorithm,” in Proceedings of the IEEE International Conference on Microwave Technology and Computational Electromagnetics, pp. 96–99, May 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Isernia, V. Pascazio, and R. Pierri, “A nonlinear estimation method in tomographie imaging,” IEEE Transactions on Geoscience and Remote Sensing, vol. 35, no. 4, pp. 910–923, 1997. View at Google Scholar · View at Scopus
  8. T. B. Hansen and P. M. Johansen, “Inversion scheme for ground penetrating radar that takes into account the planar air-soil interface,” IEEE Transactions on Geoscience and Remote Sensing, vol. 38, no. 1, pp. 496–506, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. F. Soldovieri, O. Lopera, and S. Lambot, “Combination of advanced inversion techniques for an accurate target localization via GPR for demining applications,” IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no. 1, pp. 451–461, 2011. View at Google Scholar
  10. H. Brunzell, “Detection of shallowly buried objects using impulse radar,” IEEE Transactions on Geoscience and Remote Sensing, vol. 37, no. 2, pp. 875–886, 1999. View at Google Scholar · View at Scopus
  11. F. E. A. Leite, R. Montagne, G. Corso, G. L. Vasconcelos, and L. S. Lucena, “Optimal wavelet filter for suppression of coherent noise with an application to seismic data,” Physica A, vol. 387, no. 7, pp. 1439–1445, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Hayashi and M. Sato, “F-K filter designs to suppress direct waves for bistatic ground penetrating radar,” IEEE Transactions on Geoscience and Remote Sensing, vol. 48, no. 3, pp. 1433–1444, 2010. View at Google Scholar
  13. J. Wei and Z. Chen, “The SAR imaging method of GPR based on migration,” Signal Processing, vol. 26, no. 5, pp. 778–782, 2010. View at Google Scholar
  14. C. P. Oden, “Improving GPR image resolution in lossy ground using dispersive migration,” IEEE Transactions on Geoscience and Remote Sensing, vol. 45, no. 8, pp. 2492–2500, 2007. View at Google Scholar
  15. C. Gilmore, I. Jeffrey, and J. Lovetri, “Derivation and comparison of SAR and frequency-wavenumber migration within a common inverse scalar wave problem formulation,” IEEE Transactions on Geoscience and Remote Sensing, vol. 44, no. 6, pp. 1454–1461, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. M. L. Moran, R. J. Greenfield, S. A. Arcone, and A. J. Delaney, “Multidimensional GPR array processing using Kirchhoff migration,” Journal of Applied Geophysics, vol. 43, no. 2, pp. 281–295, 2000. View at Google Scholar
  17. Z. Zhen and J. Wang, “Ground penetrating radar data imaging via the 2D finite-difference migration method,” Coal Geology and Exploration, vol. 35, no. 6, pp. 57–60, 2007. View at Google Scholar
  18. W. Zhang, A. Hoorfar, and L. Li, “Through-the-wall target localization with Time Reversal MUSIC method,” Progress in Electromagnetics Research, vol. 106, pp. 75–89, 2010. View at Google Scholar
  19. H. Lev-Ari and A. J. Devaney, “The time-reversal techniques reinterpreted: subspace-based signal processing for multi-static target location,” in Proceedings of the IEEE Sensor Array and Multichannel Signal Processing Workshop, pp. 509–513, Cambridge, Mass, USA, 2000.
  20. G. Leone and F. Soldovieri, “Analysis of the distorted born approximation for subsurface reconstruction: truncation and uncertainties effects,” IEEE Transactions on Geoscience and Remote Sensing, vol. 41, no. 1, pp. 66–74, 2003. View at Publisher · View at Google Scholar · View at Scopus