Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2012 (2012), Article ID 413683, 13 pages
http://dx.doi.org/10.1155/2012/413683
Research Article

Indoor Off-Body Wireless Communication: Static Beamforming versus Space-Time Coding

1Department of Information Technology (INTEC), Ghent University, St. Pietersnieuwstraat 41, 9000 Ghent, Belgium
2Faculty of Applied Engineering Sciences (INWE), University College Ghent, Valentin Vaerwyckweg 1, 9000 Gent, Belgium
3Department of Telecommunications and Information Processing (TELIN), Ghent University, St. Pietersnieuwstraat 41, 9000 Ghent, Belgium

Received 25 July 2011; Revised 20 October 2011; Accepted 22 October 2011

Academic Editor: Yan Zhang

Copyright © 2012 Patrick Van Torre et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Curone, E. L. Secco, A. Tognetti et al., “Smart garments for emergency operators: the ProeTEX project,” IEEE Transactions on Information Technology in Biomedicine, vol. 14, no. 3, pp. 694–701, 2010. View at Publisher · View at Google Scholar
  2. P. Van Torre, L. Vallozzi, C. Hertleer, H. Rogier, M. Moeneclaey, and J. Verhaevert, “Dynamic link performance analysis of a rescue worker's off-body communication system using integrated textile antennas,” IET Science, Measurement and Technology, vol. 4, no. 2, pp. 41–52, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Cotton and W. Scanlon, “An experimental investigation into the influence of user state and environment on fading characteristics in wireless body area networks at 2.45 GHz,” IEEE Transactions on Wireless Communications, vol. 8, no. 1, Article ID 4786471, pp. 6–12, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Vallozzi, P. Van Torre, C. Hertleer, H. Rogier, M. Moeneclaey, and J. Verhaevert, “Wireless communication for firefighters using dual-polarized textile antennas integrated in their garment,” IEEE Transactions on Antennas and Propagation, vol. 58, no. 4, Article ID 5398858, pp. 1357–1368, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. C. van Rensburg and B. Friedlander, “Transmit diversity for arrays in correlated Rayleigh fading,” IEEE Transactions on Vehicular Technology, vol. 53, no. 6, pp. 1726–1734, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Chu, J. Yuan, and Z. Chen, “A coded beamforming scheme for frequency-flat MIMO fading channels,” IET Communications, vol. 1, no. 5, pp. 1075–1081, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Hermosilla, R. A. Valenzuela, L. Ahumada, and R. Feick, “Empirical comparison of MIMO and beamforming schemes for outdoor-indoor scenarios,” IEEE Transactions on Wireless Communications, vol. 8, no. 3, Article ID 4801460, pp. 1139–1143, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Hermosilla, R. Feick, R. Valenzuela, and L. Ahumada, “Improving MIMO capacity with directive antennas for outdoor-indoor scenarios,” IEEE Transactions on Wireless Communications, vol. 8, no. 5, Article ID 4927423, pp. 2177–2181, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. X. Chen, Y. Gong, and Y. Gong, “Suppression of directional interference for STBC MIMO system based on beam-forming,” in Proceedings of the International Conference on Communications, Circuits and Systems, (ICCCAS'06), pp. 983–987, June 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Min, Y. Luxi, and Y. Xiaohu, “Adaptive transmit beamforming with space-time block coding for correlated MIMO fading channels,” in Proceedings of the IEEE International Conference on Communications, (ICC'07), pp. 5879–5884, June 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Ping, L. Zhang, and H. So, “On a hybrid beamforming/space-time coding scheme,” IEEE Communications Letters, vol. 8, no. 1, pp. 15–17, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Jongren, M. Skoglund, and B. Ottersten, “Combining beamforming and orthogonal space-time block coding,” IEEE Transactions on Information Theory, vol. 48, no. 3, pp. 611–627, 2002. View at Publisher · View at Google Scholar
  13. C. Sun and N. Karmakar, “Environment-oriented beamforming for space-time block coded multiuser MIMO communications,” in Proceedings of the Antennas and Propagation Society International Symposium, pp. 1744–1747, IEEE, June 2004. View at Scopus
  14. K. Lin, Z. Hussain, and R. Harris, “Adaptive transmit eigenbeamforming with orthogonal space-time block coding in correlated space-time channels,” in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. V-817–V-820, May 2004. View at Scopus
  15. X. Cai and G. B. Giannakis, “Differential space-time modulation with eigen-beamforming for correlated MIMO fading channels,” IEEE Transactions on Signal Processing, vol. 54, no. 4, pp. 1279–1288, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Liu and H. Jafarkhani, “Application of quasi-orthogonal space-time block codes in beamforming,” IEEE Transactions on Signal Processing, vol. 53, no. 1, pp. 54–63, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Kim and J. Chun, “MIMO structure which combines the spatial multiplexing and beamforming,” in Proceedings of the 59th IEEE Vehicular Technology Conference, (VTC'04), pp. 108–112, May 2004. View at Scopus
  18. C. Lin, V. Raghavan, and V. Veeravalli, “To code or not to code across time: space-time coding with feedback,” IEEE Journal on Selected Areas in Communications, vol. 26, no. 8, Article ID 4641968, pp. 1588–1598, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. G. Kim and N. Beaulieu, “On MIMO beamforming systems using quantized feedback,” IEEE Transactions on Communications, vol. 58, no. 3, Article ID 5426515, pp. 820–827, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Ko, Q. Ma, and C. Tepedelenlioǧlu, “Comparison of adaptive beamforming and orthogonal STBC with outdated feedback,” IEEE Transactions on Wireless Communications, vol. 6, no. 1, pp. 20–25, 2007. View at Publisher · View at Google Scholar
  21. M. Kobayashi, G. Caire, and D. Gesbert, “Transmit diversity versus opportunistic beamforming in data packet mobile downlink transmission,” IEEE Transactions on Communications, vol. 55, no. 1, pp. 151–157, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Ekbatani and H. Jafarkhani, “Combining beamforming and space-time coding using noisy quantized feedback,” IEEE Transactions on Communications, vol. 57, no. 5, pp. 1280–1286, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. S. S. Karimabadi, Y. Mohsenzadeh, A. R. Attari, and S. M. Moghadasi, “Bandwidth enhancement of single-feed circularly polarized equilateral triangular microstrip antenna,” in Proceedings of the Progress in Electromagnetic Research Symposium, pp. 147–150, Hangzhou, China, March 2008.
  24. C. L. Tang, J. H. Lu, and K. L. Wong, “Circularly polarised equilateral-triangular microstrip antenna with truncated tip,” Electronics Letters, vol. 34, no. 13, pp. 1277–1278, 1998. View at Google Scholar · View at Scopus
  25. Y. S. Jawad and G. Debatosh, “Applications of triangular microstrip patch: circuit elements to modern wireless antennas,” Mikrotalasna Revija, vol. 13, no. 1, pp. 8–11, 2007. View at Google Scholar
  26. Lion International (LDH group), 2011, http://lion-frankreich.lhd-gruppe.de/company.html.
  27. C. Oestges and B. Clerckx, MIMO Wireless Communications: From Real-World Propagation to Space-Time Code Design, Academic Press, 2007.
  28. S. M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE Journal on Selected Areas in Communications, vol. 16, no. 8, pp. 1451–1458, 1998. View at Google Scholar · View at Scopus