Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2012, Article ID 515167, 14 pages
http://dx.doi.org/10.1155/2012/515167
Research Article

Fractal-Shaped Metamaterials and Applications to Enhanced-Performance Devices Exhibiting High Selectivity

Department of Electromagnetic Field and Microwave Technique, Missile Institute of Air Force Engineering University, 713800 Sanyuan, China

Received 16 February 2011; Accepted 31 May 2011

Academic Editor: Lei Zhu

Copyright © 2012 He-Xiu Xu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Falcone, T. Lopetegi, M. A. G. Laso et al., “Babinet principle applied to the design of metasurfaces and metamaterials,” Physical Review Letters, vol. 93, no. 19, Article ID 197401, 4 pages, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Falcone, T. Lopetegi, J.D. Baena, R. Marques, F. Martin, and M. Sorolla, “Effective negative-ε stop-band microstrip lines based on complementary split-ring resonators,” IEEE Microwave and Wireless Components Letters, vol. 14, no. 6, pp. 280–282, 2004. View at Google Scholar
  3. J. D. Baena, J. Bonache, F. Martin et al., “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 4, pp. 1451–1461, 2005. View at Publisher · View at Google Scholar
  4. M. Gil, J. Bonache, J. García-García, J. Martel, and F. Martín, “Composite right/left-handed metamaterial transmission lines based on complementary split-rings resonators and their applications to very wideband and compact filter design,” IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 6, pp. 1296–1304, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Y. Zeng, G.-M. Wang, C. X. Zhang, and L. I. Zhu, “Compact microstrip low-pass filter using complementary split ring resonators with ultra-wide stopband and high selectivity,” Microwave and Optical Technology Letters, vol. 52, no. 2, pp. 430–433, 2009. View at Publisher · View at Google Scholar
  6. A. Ali and Z. Hu, “Negative permittivity meta-material microstrip binomial low-pass filter with sharper cut-off and reduced size,” IET Microwaves on Antennas and Propagation, vol. 2, no. 1, pp. 15–18, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. V. Crnojević-Bengin, V. Radonić, and B. Jokanović, “Fractal geometries of complementary split-ring resonators,” IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 10, pp. 2312–2321, 2008. View at Publisher · View at Google Scholar
  8. H. X. Xu, G. M. Wang, and C. X. Zhang, “Study and design of dual-band quarter-wave open-circuit stub based on Koch-fractal-shaped geometry of CSRRs,” in Proceedings of the IEEE International Conference on Microwave and Millimeter Wave Technology, pp. 1778–1780, Chengdu, China, May 2010. View at Publisher · View at Google Scholar
  9. H. X. Xu, G. M. Wang, Q. Peng, and J. G. Liang, “Novel design of tri-band filter based on fractal shaped geometry of CSSRR,” International Journal of Electronics, vol. 98, no. 5, pp. 647–654, 2011. View at Google Scholar
  10. H. X. Xu, G. M. Wang, C. X. Zhang, and Y. Hu, “Microstrip approach benefits quad splitter,” Microwaves & RF, vol. 49, no. 6, pp. 92–96, 2010. View at Google Scholar · View at Scopus
  11. L. Yousefi and O. M. Ramahi, “Artificial magnetic materials using fractal hilbert curves,” IEEE Transactions on Antennas and Propagation, vol. 58, no. 8, pp. 2614–2622, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. H. X. Xu, G. M. Wang, and C. X. Zhang, “Fractal-shaped UWB bandpass filter based on composite right/left handed transmission line,” Electronics Letters, vol. 46, no. 4, pp. 285–286, 2010. View at Publisher · View at Google Scholar
  13. H. Zhang and H. Xin, “A dual-band dipole antenna with integrated-balun,” IEEE Transactions on Antennas and Propagation, vol. 57, no. 3, pp. 786–789, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Peano, “Sur une courbe, qui remplit toute une aire plane,” Mathematische Annalen, vol. 36, no. 1, pp. 157–160, 1890. View at Publisher · View at Google Scholar · View at Scopus
  15. J. McVay, N. Engheta, and A. Hoorfar, “High impedance metamaterial surfaces using Hilbert-curve inclusions,” IEEE Microwave and Wireless Components Letters, vol. 14, no. 3, pp. 130–132, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. X. Chen, Y. Liu, and S. Safavi-Naeini, “Printed plane-filling fractal antennas for UHF band,” in Proceedings of the IEEE Antennas and Propagation Society AP-S International Symposium, vol. 4, pp. 3425–3428, 2004.
  17. H. Ghali and T. A. Moselhy, “Miniaturized fractal rat-race, branch-line, and coupled-line hybrids,” IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 11, pp. 2513–2520, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 11, pp. 2075–2084, 1999. View at Google Scholar · View at Scopus
  19. J. Huangfu, L. Ran, H. Chen et al., “Experimental confirmation of negative refractive index of a metamaterial composed of Ω-like metallic patterns,” Applied Physics Letters, vol. 84, no. 9, pp. 1537–1539, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. N. T. Messiha, A. M. Ghuniem, and H. M. El-Hennawy, “Planar transmission line medium with negative refractive index based on complementary Omega-like structure,” IEEE Microwave and Wireless Components Letters, vol. 18, no. 9, pp. 575–577, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. H. X. Xu, G. M. Wang, and J. G. Liang, “Novel CRLH TL metamaterial and compact microstrip branch-line coupler application,” Progress In Electromagnetics Research C, vol. 20, pp. 173–186, 2011. View at Google Scholar
  22. G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures, Artech House, Norwood, Mass, USA, 1980.